edaaaydinea commited on
Commit
9522dad
·
verified ·
1 Parent(s): 1a7fc43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +181 -180
app.py CHANGED
@@ -1,181 +1,182 @@
1
- # app.py
2
- import gradio as gr
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- import pandas as pd
7
- import spacy
8
- import textstat
9
- from nltk.tokenize import word_tokenize
10
- import nltk
11
- import re
12
- import joblib
13
- from transformers import BertTokenizerFast, BertForSequenceClassification
14
- from sentence_transformers import SentenceTransformer
15
-
16
- # --- 1. SETUP: Constants and Model Loading ---
17
- DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
- FINETUNE_MODEL_NAME = 'bert-base-uncased'
19
- MAX_LEN_BERT = 128
20
- print(f"Using device: {DEVICE}")
21
- NLP = spacy.load('en_core_web_sm', disable=['ner'])
22
- SCALER = joblib.load('scaler_mlp_discrete.joblib')
23
-
24
- # --- (Re)Define the PyTorch MLP Model Class ---
25
- class AdvancedMLP(nn.Module):
26
- # ... (This class is correct, no changes needed)
27
- def __init__(self, input_dim, num_classes=2):
28
- super(AdvancedMLP, self).__init__()
29
- self.layer_1 = nn.Linear(input_dim, 512)
30
- self.relu1 = nn.ReLU()
31
- self.batchnorm1 = nn.BatchNorm1d(512)
32
- self.dropout1 = nn.Dropout(0.3)
33
- self.layer_2 = nn.Linear(512, 128)
34
- self.relu2 = nn.ReLU()
35
- self.batchnorm2 = nn.BatchNorm1d(128)
36
- self.dropout2 = nn.Dropout(0.3)
37
- self.output_layer = nn.Linear(128, num_classes)
38
-
39
- def forward(self, x):
40
- x = self.layer_1(x); x = self.relu1(x); x = self.batchnorm1(x); x = self.dropout1(x)
41
- x = self.layer_2(x); x = self.relu2(x); x = self.batchnorm2(x); x = self.dropout2(x)
42
- x = self.output_layer(x)
43
- return x
44
-
45
- # --- Load All Models and Artifacts ---
46
- print("Loading models and artifacts...")
47
- try:
48
- nltk.download('punkt', quiet=True)
49
-
50
- TOKENIZER = BertTokenizerFast.from_pretrained(FINETUNE_MODEL_NAME)
51
-
52
- bert_for_seq_clf = BertForSequenceClassification.from_pretrained(FINETUNE_MODEL_NAME, num_labels=2)
53
- # NOTE: Ensure you have the correct file for the best BERT model. The user provided 'fold_4'.
54
- bert_for_seq_clf.load_state_dict(torch.load("best_bert_finetuned_fold_4.bin", map_location=DEVICE))
55
- BERT_EMBEDDING_MODEL = bert_for_seq_clf.bert.to(DEVICE).eval()
56
-
57
- INPUT_DIM_MLP = 768 + 19
58
- MLP_MODEL = AdvancedMLP(input_dim=INPUT_DIM_MLP).to(DEVICE)
59
- MLP_MODEL.load_state_dict(torch.load("best_mlp_combined_features_ZuCo.bin", map_location=DEVICE))
60
- MLP_MODEL.eval()
61
-
62
- NLP = spacy.load('en_core_web_sm', disable=['ner'])
63
-
64
- # NOTE: Ensure this filename matches the scaler you saved.
65
- SCALER = joblib.load('scaler_mlp_discrete.joblib')
66
-
67
- print("All models and artifacts loaded successfully.")
68
-
69
- except FileNotFoundError as e:
70
- print(f"ERROR: A required file was not found: {e.name}")
71
- print("Please ensure 'best_bert_finetuned_fold_4.bin', 'best_mlp_combined_features_ZuCo.bin', and 'scaler_mlp_discrete.joblib' are in the same directory.")
72
- exit()
73
-
74
- # --- 2. PREPROCESSING & FEATURE ENGINEERING FUNCTIONS ---
75
- def clean_text(text):
76
- text = str(text).lower()
77
- return re.sub(r'\\s+', ' ', text).strip()
78
-
79
- # FIX 1: Pass the `nlp_model` object as an argument.
80
- def get_discrete_features(sentence, nlp_model):
81
- """Calculates all 19 discrete linguistic features for a single sentence."""
82
- features = {}
83
-
84
- # ... (rest of the feature calculation is correct)
85
- features['char_count'] = len(sentence)
86
- words = sentence.split()
87
- features['word_count'] = len(words)
88
- features['avg_word_length'] = features['char_count'] / features['word_count'] if features['word_count'] > 0 else 0
89
- features['flesch_ease'] = textstat.flesch_reading_ease(sentence)
90
- features['flesch_grade'] = textstat.flesch_kincaid_grade(sentence)
91
- features['gunning_fog'] = textstat.gunning_fog(sentence)
92
- tokens = word_tokenize(sentence)
93
- features['ttr'] = len(set(tokens)) / len(tokens) if tokens else 0
94
- features['lex_density_proxy'] = sum(1 for w in tokens if len(w) > 6) / len(tokens) if tokens else 0
95
-
96
- # FIX 2: Use the passed `nlp_model` argument instead of the global name `NLP`.
97
- doc = nlp_model(sentence)
98
- dep_distances = [abs(token.i - token.head.i) for token in doc if token.head is not token]
99
- pos_counts = doc.count_by(spacy.attrs.POS)
100
-
101
- features['num_subord_clauses'] = sum(1 for token in doc if token.dep_ == 'mark')
102
- features['num_conj_clauses'] = sum(1 for token in doc if token.dep_ == 'cc' and token.head.pos_ == 'VERB')
103
- features['avg_dep_dist'] = np.mean(dep_distances) if dep_distances else 0
104
- features['max_dep_dist'] = np.max(dep_distances) if dep_distances else 0
105
- features['num_verbs'] = pos_counts.get(spacy.parts_of_speech.VERB, 0)
106
- features['num_nouns'] = pos_counts.get(spacy.parts_of_speech.NOUN, 0) + pos_counts.get(spacy.parts_of_speech.PROPN, 0)
107
- features['num_adjectives'] = pos_counts.get(spacy.parts_of_speech.ADJ, 0)
108
- features['num_adverbs'] = pos_counts.get(spacy.parts_of_speech.ADV, 0)
109
- features['num_prepositions'] = pos_counts.get(spacy.parts_of_speech.ADP, 0)
110
- features['num_conjunctions'] = pos_counts.get(spacy.parts_of_speech.CCONJ, 0) + pos_counts.get(spacy.parts_of_speech.SCONJ, 0)
111
-
112
- feature_order = [
113
- 'char_count', 'word_count', 'avg_word_length', 'ttr', 'lex_density_proxy',
114
- 'flesch_ease', 'flesch_grade', 'gunning_fog', 'num_subord_clauses',
115
- 'num_conj_clauses', 'avg_dep_dist', 'max_dep_dist', 'num_verbs',
116
- 'num_nouns', 'num_adjectives', 'num_adverbs', 'num_prepositions', 'num_conjunctions',
117
- 'ollama_llm_rating'
118
- ]
119
- features['ollama_llm_rating'] = 3.0
120
- return np.array([features[k] for k in feature_order]).reshape(1, -1)
121
-
122
- def get_bert_embedding(sentence):
123
- # ... (This function is correct, no changes needed)
124
- encoded = TOKENIZER.encode_plus(sentence, add_special_tokens=True, max_length=MAX_LEN_BERT, return_token_type_ids=False, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt')
125
- input_ids, attention_mask = encoded['input_ids'].to(DEVICE), encoded['attention_mask'].to(DEVICE)
126
- with torch.no_grad():
127
- outputs = BERT_EMBEDDING_MODEL(input_ids, attention_mask=attention_mask)
128
- embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
129
- return embedding
130
-
131
- # --- 3. THE PREDICTION FUNCTION ---
132
- def predict_cognitive_state(sentence):
133
- if not sentence.strip():
134
- return {"Normal Reading (NR)": 0, "Task-Specific Reading (TSR)": 0}
135
-
136
- cleaned = clean_text(sentence)
137
-
138
- # FIX 3: Pass the loaded NLP model into the function.
139
- discrete_features = get_discrete_features(cleaned, NLP)
140
-
141
- scaled_discrete_features = SCALER.transform(discrete_features)
142
- bert_embedding = get_bert_embedding(cleaned)
143
- combined_features = np.concatenate((bert_embedding, scaled_discrete_features), axis=1)
144
-
145
- features_tensor = torch.tensor(combined_features, dtype=torch.float32).to(DEVICE)
146
- with torch.no_grad():
147
- logits = MLP_MODEL(features_tensor)
148
- probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
149
-
150
- labels = ["Normal Reading (NR)", "Task-Specific Reading (TSR)"]
151
- confidences = {label: float(prob) for label, prob in zip(labels, probabilities)}
152
-
153
- return confidences
154
-
155
- # --- 4. GRADIO INTERFACE ---
156
- title = "🧠 Cognitive State Analysis from Text"
157
- description = (
158
- "Enter a sentence to predict its cognitive state. This demo uses a fine-tuned BERT model for semantic "
159
- "embeddings combined with 19 discrete linguistic features, fed into a Multi-Layer Perceptron (MLP) "
160
- "to classify text as either 'Normal Reading (NR)' or 'Task-Specific Reading (TSR)' based on the ZuCo dataset."
161
- )
162
- example_list = [
163
- ["Through his son Timothy Bush, Jr., who was also a blacksmith, descended two American Presidents -George H. W. Bush and George W. Bush."],
164
- ["He received his bachelor's degree in 1965 and master's degree in political science in 1966 both from the University of Wyoming."],
165
- ["What does the abbreviation Ph.D. stand for?"],
166
- ["What is the name of the director of the 2003 American film 'The Haunted Mansion'?"],
167
- ]
168
-
169
- demo = gr.Interface(
170
- fn=predict_cognitive_state,
171
- inputs=gr.Textbox(lines=3, label="Input Sentence", placeholder="Type a sentence here..."),
172
- outputs=gr.Label(num_top_classes=2, label="Prediction"),
173
- title=title,
174
- description=description,
175
- examples=example_list,
176
- allow_flagging="never"
177
- )
178
-
179
- if __name__ == "__main__":
180
- # FIX 4: Corrected the typo from Launch to launch (lowercase 'l').
 
181
  demo.launch(debug=True)
 
1
+ # app.py
2
+ import gradio as gr
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ import pandas as pd
7
+ import spacy
8
+ import textstat
9
+ from nltk.tokenize import word_tokenize
10
+ import nltk
11
+ import re
12
+ import joblib
13
+ from transformers import BertTokenizerFast, BertForSequenceClassification
14
+ from sentence_transformers import SentenceTransformer
15
+
16
+ # --- 1. SETUP: Constants and Model Loading ---
17
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+ FINETUNE_MODEL_NAME = 'bert-base-uncased'
19
+ MAX_LEN_BERT = 128
20
+ print(f"Using device: {DEVICE}")
21
+ NLP = spacy.load('en_core_web_sm', disable=['ner'])
22
+ SCALER = joblib.load('scaler_mlp_discrete.joblib')
23
+
24
+ # --- (Re)Define the PyTorch MLP Model Class ---
25
+ class AdvancedMLP(nn.Module):
26
+ # ... (This class is correct, no changes needed)
27
+ def __init__(self, input_dim, num_classes=2):
28
+ super(AdvancedMLP, self).__init__()
29
+ self.layer_1 = nn.Linear(input_dim, 512)
30
+ self.relu1 = nn.ReLU()
31
+ self.batchnorm1 = nn.BatchNorm1d(512)
32
+ self.dropout1 = nn.Dropout(0.3)
33
+ self.layer_2 = nn.Linear(512, 128)
34
+ self.relu2 = nn.ReLU()
35
+ self.batchnorm2 = nn.BatchNorm1d(128)
36
+ self.dropout2 = nn.Dropout(0.3)
37
+ self.output_layer = nn.Linear(128, num_classes)
38
+
39
+ def forward(self, x):
40
+ x = self.layer_1(x); x = self.relu1(x); x = self.batchnorm1(x); x = self.dropout1(x)
41
+ x = self.layer_2(x); x = self.relu2(x); x = self.batchnorm2(x); x = self.dropout2(x)
42
+ x = self.output_layer(x)
43
+ return x
44
+
45
+ # --- Load All Models and Artifacts ---
46
+ print("Loading models and artifacts...")
47
+ try:
48
+ nltk.download('punkt', quiet=True)
49
+ nltk.download('punkt_tab', quiet=True)
50
+
51
+ TOKENIZER = BertTokenizerFast.from_pretrained(FINETUNE_MODEL_NAME)
52
+
53
+ bert_for_seq_clf = BertForSequenceClassification.from_pretrained(FINETUNE_MODEL_NAME, num_labels=2)
54
+ # NOTE: Ensure you have the correct file for the best BERT model. The user provided 'fold_4'.
55
+ bert_for_seq_clf.load_state_dict(torch.load("best_bert_finetuned_fold_4.bin", map_location=DEVICE))
56
+ BERT_EMBEDDING_MODEL = bert_for_seq_clf.bert.to(DEVICE).eval()
57
+
58
+ INPUT_DIM_MLP = 768 + 19
59
+ MLP_MODEL = AdvancedMLP(input_dim=INPUT_DIM_MLP).to(DEVICE)
60
+ MLP_MODEL.load_state_dict(torch.load("best_mlp_combined_features_ZuCo.bin", map_location=DEVICE))
61
+ MLP_MODEL.eval()
62
+
63
+ NLP = spacy.load('en_core_web_sm', disable=['ner'])
64
+
65
+ # NOTE: Ensure this filename matches the scaler you saved.
66
+ SCALER = joblib.load('scaler_mlp_discrete.joblib')
67
+
68
+ print("All models and artifacts loaded successfully.")
69
+
70
+ except FileNotFoundError as e:
71
+ print(f"ERROR: A required file was not found: {e.name}")
72
+ print("Please ensure 'best_bert_finetuned_fold_4.bin', 'best_mlp_combined_features_ZuCo.bin', and 'scaler_mlp_discrete.joblib' are in the same directory.")
73
+ exit()
74
+
75
+ # --- 2. PREPROCESSING & FEATURE ENGINEERING FUNCTIONS ---
76
+ def clean_text(text):
77
+ text = str(text).lower()
78
+ return re.sub(r'\\s+', ' ', text).strip()
79
+
80
+ # FIX 1: Pass the `nlp_model` object as an argument.
81
+ def get_discrete_features(sentence, nlp_model):
82
+ """Calculates all 19 discrete linguistic features for a single sentence."""
83
+ features = {}
84
+
85
+ # ... (rest of the feature calculation is correct)
86
+ features['char_count'] = len(sentence)
87
+ words = sentence.split()
88
+ features['word_count'] = len(words)
89
+ features['avg_word_length'] = features['char_count'] / features['word_count'] if features['word_count'] > 0 else 0
90
+ features['flesch_ease'] = textstat.flesch_reading_ease(sentence)
91
+ features['flesch_grade'] = textstat.flesch_kincaid_grade(sentence)
92
+ features['gunning_fog'] = textstat.gunning_fog(sentence)
93
+ tokens = word_tokenize(sentence)
94
+ features['ttr'] = len(set(tokens)) / len(tokens) if tokens else 0
95
+ features['lex_density_proxy'] = sum(1 for w in tokens if len(w) > 6) / len(tokens) if tokens else 0
96
+
97
+ # FIX 2: Use the passed `nlp_model` argument instead of the global name `NLP`.
98
+ doc = nlp_model(sentence)
99
+ dep_distances = [abs(token.i - token.head.i) for token in doc if token.head is not token]
100
+ pos_counts = doc.count_by(spacy.attrs.POS)
101
+
102
+ features['num_subord_clauses'] = sum(1 for token in doc if token.dep_ == 'mark')
103
+ features['num_conj_clauses'] = sum(1 for token in doc if token.dep_ == 'cc' and token.head.pos_ == 'VERB')
104
+ features['avg_dep_dist'] = np.mean(dep_distances) if dep_distances else 0
105
+ features['max_dep_dist'] = np.max(dep_distances) if dep_distances else 0
106
+ features['num_verbs'] = pos_counts.get(spacy.parts_of_speech.VERB, 0)
107
+ features['num_nouns'] = pos_counts.get(spacy.parts_of_speech.NOUN, 0) + pos_counts.get(spacy.parts_of_speech.PROPN, 0)
108
+ features['num_adjectives'] = pos_counts.get(spacy.parts_of_speech.ADJ, 0)
109
+ features['num_adverbs'] = pos_counts.get(spacy.parts_of_speech.ADV, 0)
110
+ features['num_prepositions'] = pos_counts.get(spacy.parts_of_speech.ADP, 0)
111
+ features['num_conjunctions'] = pos_counts.get(spacy.parts_of_speech.CCONJ, 0) + pos_counts.get(spacy.parts_of_speech.SCONJ, 0)
112
+
113
+ feature_order = [
114
+ 'char_count', 'word_count', 'avg_word_length', 'ttr', 'lex_density_proxy',
115
+ 'flesch_ease', 'flesch_grade', 'gunning_fog', 'num_subord_clauses',
116
+ 'num_conj_clauses', 'avg_dep_dist', 'max_dep_dist', 'num_verbs',
117
+ 'num_nouns', 'num_adjectives', 'num_adverbs', 'num_prepositions', 'num_conjunctions',
118
+ 'ollama_llm_rating'
119
+ ]
120
+ features['ollama_llm_rating'] = 3.0
121
+ return np.array([features[k] for k in feature_order]).reshape(1, -1)
122
+
123
+ def get_bert_embedding(sentence):
124
+ # ... (This function is correct, no changes needed)
125
+ encoded = TOKENIZER.encode_plus(sentence, add_special_tokens=True, max_length=MAX_LEN_BERT, return_token_type_ids=False, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt')
126
+ input_ids, attention_mask = encoded['input_ids'].to(DEVICE), encoded['attention_mask'].to(DEVICE)
127
+ with torch.no_grad():
128
+ outputs = BERT_EMBEDDING_MODEL(input_ids, attention_mask=attention_mask)
129
+ embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
130
+ return embedding
131
+
132
+ # --- 3. THE PREDICTION FUNCTION ---
133
+ def predict_cognitive_state(sentence):
134
+ if not sentence.strip():
135
+ return {"Normal Reading (NR)": 0, "Task-Specific Reading (TSR)": 0}
136
+
137
+ cleaned = clean_text(sentence)
138
+
139
+ # FIX 3: Pass the loaded NLP model into the function.
140
+ discrete_features = get_discrete_features(cleaned, NLP)
141
+
142
+ scaled_discrete_features = SCALER.transform(discrete_features)
143
+ bert_embedding = get_bert_embedding(cleaned)
144
+ combined_features = np.concatenate((bert_embedding, scaled_discrete_features), axis=1)
145
+
146
+ features_tensor = torch.tensor(combined_features, dtype=torch.float32).to(DEVICE)
147
+ with torch.no_grad():
148
+ logits = MLP_MODEL(features_tensor)
149
+ probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
150
+
151
+ labels = ["Normal Reading (NR)", "Task-Specific Reading (TSR)"]
152
+ confidences = {label: float(prob) for label, prob in zip(labels, probabilities)}
153
+
154
+ return confidences
155
+
156
+ # --- 4. GRADIO INTERFACE ---
157
+ title = "🧠 Cognitive State Analysis from Text"
158
+ description = (
159
+ "Enter a sentence to predict its cognitive state. This demo uses a fine-tuned BERT model for semantic "
160
+ "embeddings combined with 19 discrete linguistic features, fed into a Multi-Layer Perceptron (MLP) "
161
+ "to classify text as either 'Normal Reading (NR)' or 'Task-Specific Reading (TSR)' based on the ZuCo dataset."
162
+ )
163
+ example_list = [
164
+ ["Through his son Timothy Bush, Jr., who was also a blacksmith, descended two American Presidents -George H. W. Bush and George W. Bush."],
165
+ ["He received his bachelor's degree in 1965 and master's degree in political science in 1966 both from the University of Wyoming."],
166
+ ["What does the abbreviation Ph.D. stand for?"],
167
+ ["What is the name of the director of the 2003 American film 'The Haunted Mansion'?"],
168
+ ]
169
+
170
+ demo = gr.Interface(
171
+ fn=predict_cognitive_state,
172
+ inputs=gr.Textbox(lines=3, label="Input Sentence", placeholder="Type a sentence here..."),
173
+ outputs=gr.Label(num_top_classes=2, label="Prediction"),
174
+ title=title,
175
+ description=description,
176
+ examples=example_list,
177
+ allow_flagging="never"
178
+ )
179
+
180
+ if __name__ == "__main__":
181
+ # FIX 4: Corrected the typo from Launch to launch (lowercase 'l').
182
  demo.launch(debug=True)