edaaaydinea commited on
Commit
01a20f5
·
verified ·
1 Parent(s): 7250cda

Upload folder using huggingface_hub

Browse files
.cache_ggshield ADDED
@@ -0,0 +1 @@
 
 
1
+ {"last_found_secrets": [{"name": "Hugging Face user access token - c:\\Users\\Eda AYDIN\\OneDrive\\Belgeler\\GitHub\\zuco-cognitive-analysis\\hf_token.txt", "match": "34e13d1e38bc8f71e3dabe944490cc27ddcdbb054d9490ccc5e755d81869c00c"}]}
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Zuco Cognitive Anayzer
3
- emoji: 🦀
4
- colorFrom: green
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.38.2
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: zuco-cognitive-anayzer
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 5.18.0
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import gradio as gr
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ import pandas as pd
7
+ import spacy
8
+ import textstat
9
+ from nltk.tokenize import word_tokenize
10
+ import nltk
11
+ import re
12
+ import joblib
13
+ from transformers import BertTokenizerFast, BertForSequenceClassification
14
+ from sentence_transformers import SentenceTransformer
15
+
16
+ # --- 1. SETUP: Constants and Model Loading ---
17
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
+ FINETUNE_MODEL_NAME = 'bert-base-uncased'
19
+ MAX_LEN_BERT = 128
20
+ print(f"Using device: {DEVICE}")
21
+ NLP = spacy.load('en_core_web_sm', disable=['ner'])
22
+ SCALER = joblib.load('scaler_mlp_discrete.joblib')
23
+
24
+ # --- (Re)Define the PyTorch MLP Model Class ---
25
+ class AdvancedMLP(nn.Module):
26
+ # ... (This class is correct, no changes needed)
27
+ def __init__(self, input_dim, num_classes=2):
28
+ super(AdvancedMLP, self).__init__()
29
+ self.layer_1 = nn.Linear(input_dim, 512)
30
+ self.relu1 = nn.ReLU()
31
+ self.batchnorm1 = nn.BatchNorm1d(512)
32
+ self.dropout1 = nn.Dropout(0.3)
33
+ self.layer_2 = nn.Linear(512, 128)
34
+ self.relu2 = nn.ReLU()
35
+ self.batchnorm2 = nn.BatchNorm1d(128)
36
+ self.dropout2 = nn.Dropout(0.3)
37
+ self.output_layer = nn.Linear(128, num_classes)
38
+
39
+ def forward(self, x):
40
+ x = self.layer_1(x); x = self.relu1(x); x = self.batchnorm1(x); x = self.dropout1(x)
41
+ x = self.layer_2(x); x = self.relu2(x); x = self.batchnorm2(x); x = self.dropout2(x)
42
+ x = self.output_layer(x)
43
+ return x
44
+
45
+ # --- Load All Models and Artifacts ---
46
+ print("Loading models and artifacts...")
47
+ try:
48
+ nltk.download('punkt', quiet=True)
49
+
50
+ TOKENIZER = BertTokenizerFast.from_pretrained(FINETUNE_MODEL_NAME)
51
+
52
+ bert_for_seq_clf = BertForSequenceClassification.from_pretrained(FINETUNE_MODEL_NAME, num_labels=2)
53
+ # NOTE: Ensure you have the correct file for the best BERT model. The user provided 'fold_4'.
54
+ bert_for_seq_clf.load_state_dict(torch.load("best_bert_finetuned_fold_4.bin", map_location=DEVICE))
55
+ BERT_EMBEDDING_MODEL = bert_for_seq_clf.bert.to(DEVICE).eval()
56
+
57
+ INPUT_DIM_MLP = 768 + 19
58
+ MLP_MODEL = AdvancedMLP(input_dim=INPUT_DIM_MLP).to(DEVICE)
59
+ MLP_MODEL.load_state_dict(torch.load("best_mlp_combined_features_ZuCo.bin", map_location=DEVICE))
60
+ MLP_MODEL.eval()
61
+
62
+ NLP = spacy.load('en_core_web_sm', disable=['ner'])
63
+
64
+ # NOTE: Ensure this filename matches the scaler you saved.
65
+ SCALER = joblib.load('scaler_mlp_discrete.joblib')
66
+
67
+ print("All models and artifacts loaded successfully.")
68
+
69
+ except FileNotFoundError as e:
70
+ print(f"ERROR: A required file was not found: {e.name}")
71
+ print("Please ensure 'best_bert_finetuned_fold_4.bin', 'best_mlp_combined_features_ZuCo.bin', and 'scaler_mlp_discrete.joblib' are in the same directory.")
72
+ exit()
73
+
74
+ # --- 2. PREPROCESSING & FEATURE ENGINEERING FUNCTIONS ---
75
+ def clean_text(text):
76
+ text = str(text).lower()
77
+ return re.sub(r'\\s+', ' ', text).strip()
78
+
79
+ # FIX 1: Pass the `nlp_model` object as an argument.
80
+ def get_discrete_features(sentence, nlp_model):
81
+ """Calculates all 19 discrete linguistic features for a single sentence."""
82
+ features = {}
83
+
84
+ # ... (rest of the feature calculation is correct)
85
+ features['char_count'] = len(sentence)
86
+ words = sentence.split()
87
+ features['word_count'] = len(words)
88
+ features['avg_word_length'] = features['char_count'] / features['word_count'] if features['word_count'] > 0 else 0
89
+ features['flesch_ease'] = textstat.flesch_reading_ease(sentence)
90
+ features['flesch_grade'] = textstat.flesch_kincaid_grade(sentence)
91
+ features['gunning_fog'] = textstat.gunning_fog(sentence)
92
+ tokens = word_tokenize(sentence)
93
+ features['ttr'] = len(set(tokens)) / len(tokens) if tokens else 0
94
+ features['lex_density_proxy'] = sum(1 for w in tokens if len(w) > 6) / len(tokens) if tokens else 0
95
+
96
+ # FIX 2: Use the passed `nlp_model` argument instead of the global name `NLP`.
97
+ doc = nlp_model(sentence)
98
+ dep_distances = [abs(token.i - token.head.i) for token in doc if token.head is not token]
99
+ pos_counts = doc.count_by(spacy.attrs.POS)
100
+
101
+ features['num_subord_clauses'] = sum(1 for token in doc if token.dep_ == 'mark')
102
+ features['num_conj_clauses'] = sum(1 for token in doc if token.dep_ == 'cc' and token.head.pos_ == 'VERB')
103
+ features['avg_dep_dist'] = np.mean(dep_distances) if dep_distances else 0
104
+ features['max_dep_dist'] = np.max(dep_distances) if dep_distances else 0
105
+ features['num_verbs'] = pos_counts.get(spacy.parts_of_speech.VERB, 0)
106
+ features['num_nouns'] = pos_counts.get(spacy.parts_of_speech.NOUN, 0) + pos_counts.get(spacy.parts_of_speech.PROPN, 0)
107
+ features['num_adjectives'] = pos_counts.get(spacy.parts_of_speech.ADJ, 0)
108
+ features['num_adverbs'] = pos_counts.get(spacy.parts_of_speech.ADV, 0)
109
+ features['num_prepositions'] = pos_counts.get(spacy.parts_of_speech.ADP, 0)
110
+ features['num_conjunctions'] = pos_counts.get(spacy.parts_of_speech.CCONJ, 0) + pos_counts.get(spacy.parts_of_speech.SCONJ, 0)
111
+
112
+ feature_order = [
113
+ 'char_count', 'word_count', 'avg_word_length', 'ttr', 'lex_density_proxy',
114
+ 'flesch_ease', 'flesch_grade', 'gunning_fog', 'num_subord_clauses',
115
+ 'num_conj_clauses', 'avg_dep_dist', 'max_dep_dist', 'num_verbs',
116
+ 'num_nouns', 'num_adjectives', 'num_adverbs', 'num_prepositions', 'num_conjunctions',
117
+ 'ollama_llm_rating'
118
+ ]
119
+ features['ollama_llm_rating'] = 3.0
120
+ return np.array([features[k] for k in feature_order]).reshape(1, -1)
121
+
122
+ def get_bert_embedding(sentence):
123
+ # ... (This function is correct, no changes needed)
124
+ encoded = TOKENIZER.encode_plus(sentence, add_special_tokens=True, max_length=MAX_LEN_BERT, return_token_type_ids=False, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt')
125
+ input_ids, attention_mask = encoded['input_ids'].to(DEVICE), encoded['attention_mask'].to(DEVICE)
126
+ with torch.no_grad():
127
+ outputs = BERT_EMBEDDING_MODEL(input_ids, attention_mask=attention_mask)
128
+ embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
129
+ return embedding
130
+
131
+ # --- 3. THE PREDICTION FUNCTION ---
132
+ def predict_cognitive_state(sentence):
133
+ if not sentence.strip():
134
+ return {"Normal Reading (NR)": 0, "Task-Specific Reading (TSR)": 0}
135
+
136
+ cleaned = clean_text(sentence)
137
+
138
+ # FIX 3: Pass the loaded NLP model into the function.
139
+ discrete_features = get_discrete_features(cleaned, NLP)
140
+
141
+ scaled_discrete_features = SCALER.transform(discrete_features)
142
+ bert_embedding = get_bert_embedding(cleaned)
143
+ combined_features = np.concatenate((bert_embedding, scaled_discrete_features), axis=1)
144
+
145
+ features_tensor = torch.tensor(combined_features, dtype=torch.float32).to(DEVICE)
146
+ with torch.no_grad():
147
+ logits = MLP_MODEL(features_tensor)
148
+ probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
149
+
150
+ labels = ["Normal Reading (NR)", "Task-Specific Reading (TSR)"]
151
+ confidences = {label: float(prob) for label, prob in zip(labels, probabilities)}
152
+
153
+ return confidences
154
+
155
+ # --- 4. GRADIO INTERFACE ---
156
+ title = "🧠 Cognitive State Analysis from Text"
157
+ description = (
158
+ "Enter a sentence to predict its cognitive state. This demo uses a fine-tuned BERT model for semantic "
159
+ "embeddings combined with 19 discrete linguistic features, fed into a Multi-Layer Perceptron (MLP) "
160
+ "to classify text as either 'Normal Reading (NR)' or 'Task-Specific Reading (TSR)' based on the ZuCo dataset."
161
+ )
162
+ example_list = [
163
+ ["Through his son Timothy Bush, Jr., who was also a blacksmith, descended two American Presidents -George H. W. Bush and George W. Bush."],
164
+ ["He received his bachelor's degree in 1965 and master's degree in political science in 1966 both from the University of Wyoming."],
165
+ ["What does the abbreviation Ph.D. stand for?"],
166
+ ["What is the name of the director of the 2003 American film 'The Haunted Mansion'?"],
167
+ ]
168
+
169
+ demo = gr.Interface(
170
+ fn=predict_cognitive_state,
171
+ inputs=gr.Textbox(lines=3, label="Input Sentence", placeholder="Type a sentence here..."),
172
+ outputs=gr.Label(num_top_classes=2, label="Prediction"),
173
+ title=title,
174
+ description=description,
175
+ examples=example_list,
176
+ allow_flagging="never"
177
+ )
178
+
179
+ if __name__ == "__main__":
180
+ # FIX 4: Corrected the typo from Launch to launch (lowercase 'l').
181
+ demo.launch(debug=True)
best_bert_finetuned_fold_4.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c03bb18d973a176c60afc90b779c5182cbbec3c84d45f7a37a068d75e7d80a78
3
+ size 438020695
best_mlp_combined_features_ZuCo.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8064f0cea8b4aa252bcfb8625f2f9dc5d505a22f4902dbf6d142f7c8e46e34f
3
+ size 1893958
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- Core Libraries ---
2
+ torch
3
+ transformers
4
+ gradio
5
+ numpy
6
+ pandas
7
+ textstat
8
+ nltk
9
+ joblib
10
+ scikit-learn
11
+ sentence-transformers
12
+
13
+ # --- SpaCy Library ---
14
+ spacy==3.7.2
15
+
16
+ # --- SpaCy Model (installed as a package via direct link) ---
17
+ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
scaler_mlp_discrete.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb6563832a53d4b3b13ec487f60580883feea9d71605a98d18f4d2f355d5bc0e
3
+ size 1599
zuco-cognitive-analysis/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
zuco-cognitive-analysis/README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Zuco Cognitive Analysis
3
+ emoji: 🦀
4
+ colorFrom: indigo
5
+ colorTo: green
6
+ sdk: docker
7
+ pinned: false
8
+ license: apache-2.0
9
+ ---
10
+
11
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference