Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +1 -0
- SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2 +3 -0
- TMIDIX.py +0 -0
- app.py +417 -0
- midi_to_colab_audio.py +0 -0
- packages.txt +1 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2 filter=lfs diff=lfs merge=lfs -text
|
SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd41a4639c9e7a96413b4b22540d48e6741e24bcdabcb2eff22cd65929df3cfa
|
| 3 |
+
size 553961496
|
TMIDIX.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
|
| 3 |
+
import time as reqtime
|
| 4 |
+
import datetime
|
| 5 |
+
from pytz import timezone
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
import spaces
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
from x_transformer_1_23_2 import *
|
| 13 |
+
import random
|
| 14 |
+
import tqdm
|
| 15 |
+
|
| 16 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
| 17 |
+
import TMIDIX
|
| 18 |
+
|
| 19 |
+
import matplotlib.pyplot as plt
|
| 20 |
+
|
| 21 |
+
in_space = os.getenv("SYSTEM") == "spaces"
|
| 22 |
+
|
| 23 |
+
# =================================================================================================
|
| 24 |
+
|
| 25 |
+
@spaces.GPU
|
| 26 |
+
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes):
|
| 27 |
+
print('=' * 70)
|
| 28 |
+
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
| 29 |
+
start_time = reqtime.time()
|
| 30 |
+
|
| 31 |
+
print('Loading model...')
|
| 32 |
+
|
| 33 |
+
SEQ_LEN = 8192 # Models seq len
|
| 34 |
+
PAD_IDX = 707 # Models pad index
|
| 35 |
+
DEVICE = 'cuda' # 'cuda'
|
| 36 |
+
|
| 37 |
+
# instantiate the model
|
| 38 |
+
|
| 39 |
+
model = TransformerWrapper(
|
| 40 |
+
num_tokens = PAD_IDX+1,
|
| 41 |
+
max_seq_len = SEQ_LEN,
|
| 42 |
+
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
| 46 |
+
|
| 47 |
+
model.to(DEVICE)
|
| 48 |
+
print('=' * 70)
|
| 49 |
+
|
| 50 |
+
print('Loading model checkpoint...')
|
| 51 |
+
|
| 52 |
+
model.load_state_dict(
|
| 53 |
+
torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth',
|
| 54 |
+
map_location=DEVICE))
|
| 55 |
+
print('=' * 70)
|
| 56 |
+
|
| 57 |
+
model.eval()
|
| 58 |
+
|
| 59 |
+
if DEVICE == 'cpu':
|
| 60 |
+
dtype = torch.bfloat16
|
| 61 |
+
else:
|
| 62 |
+
dtype = torch.float16
|
| 63 |
+
|
| 64 |
+
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
|
| 65 |
+
|
| 66 |
+
print('Done!')
|
| 67 |
+
print('=' * 70)
|
| 68 |
+
|
| 69 |
+
fn = os.path.basename(input_midi.name)
|
| 70 |
+
fn1 = fn.split('.')[0]
|
| 71 |
+
|
| 72 |
+
input_num_tokens = max(4, min(128, input_num_tokens))
|
| 73 |
+
|
| 74 |
+
print('-' * 70)
|
| 75 |
+
print('Input file name:', fn)
|
| 76 |
+
print('Req num toks:', input_num_tokens)
|
| 77 |
+
print('Conditioning type:', input_conditioning_type)
|
| 78 |
+
print('Strip notes:', input_strip_notes)
|
| 79 |
+
print('-' * 70)
|
| 80 |
+
|
| 81 |
+
#===============================================================================
|
| 82 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
| 83 |
+
|
| 84 |
+
#===============================================================================
|
| 85 |
+
# Enhanced score notes
|
| 86 |
+
|
| 87 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
|
| 88 |
+
|
| 89 |
+
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
|
| 90 |
+
|
| 91 |
+
if len(no_drums_escore_notes) > 0:
|
| 92 |
+
|
| 93 |
+
#=======================================================
|
| 94 |
+
# PRE-PROCESSING
|
| 95 |
+
|
| 96 |
+
#===============================================================================
|
| 97 |
+
# Augmented enhanced score notes
|
| 98 |
+
|
| 99 |
+
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
|
| 100 |
+
|
| 101 |
+
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
|
| 102 |
+
|
| 103 |
+
clean_cscore = []
|
| 104 |
+
|
| 105 |
+
for c in cscore:
|
| 106 |
+
pitches = []
|
| 107 |
+
cho = []
|
| 108 |
+
for cc in c:
|
| 109 |
+
if cc[4] not in pitches:
|
| 110 |
+
cho.append(cc)
|
| 111 |
+
pitches.append(cc[4])
|
| 112 |
+
|
| 113 |
+
clean_cscore.append(cho)
|
| 114 |
+
|
| 115 |
+
#=======================================================
|
| 116 |
+
# FINAL PROCESSING
|
| 117 |
+
|
| 118 |
+
melody_chords = []
|
| 119 |
+
chords = []
|
| 120 |
+
times = [0]
|
| 121 |
+
durs = []
|
| 122 |
+
|
| 123 |
+
#=======================================================
|
| 124 |
+
# MAIN PROCESSING CYCLE
|
| 125 |
+
#=======================================================
|
| 126 |
+
|
| 127 |
+
pe = clean_cscore[0][0]
|
| 128 |
+
|
| 129 |
+
first_chord = True
|
| 130 |
+
|
| 131 |
+
for c in clean_cscore:
|
| 132 |
+
|
| 133 |
+
# Chords
|
| 134 |
+
|
| 135 |
+
c.sort(key=lambda x: x[4], reverse=True)
|
| 136 |
+
|
| 137 |
+
tones_chord = sorted(set([cc[4] % 12 for cc in c]))
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
|
| 141 |
+
except:
|
| 142 |
+
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
|
| 143 |
+
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
|
| 144 |
+
|
| 145 |
+
melody_chords.extend([chord_token+384])
|
| 146 |
+
|
| 147 |
+
if input_strip_notes:
|
| 148 |
+
if len(tones_chord) > 1:
|
| 149 |
+
chords.extend([chord_token+384])
|
| 150 |
+
|
| 151 |
+
else:
|
| 152 |
+
chords.extend([chord_token+384])
|
| 153 |
+
|
| 154 |
+
if first_chord:
|
| 155 |
+
melody_chords.extend([0])
|
| 156 |
+
first_chord = False
|
| 157 |
+
|
| 158 |
+
for e in c:
|
| 159 |
+
|
| 160 |
+
#=======================================================
|
| 161 |
+
# Timings...
|
| 162 |
+
|
| 163 |
+
time = e[1]-pe[1]
|
| 164 |
+
|
| 165 |
+
dur = e[2]
|
| 166 |
+
|
| 167 |
+
if time != 0 and time % 2 != 0:
|
| 168 |
+
time += 1
|
| 169 |
+
if dur % 2 != 0:
|
| 170 |
+
dur += 1
|
| 171 |
+
|
| 172 |
+
delta_time = int(max(0, min(255, time)) / 2)
|
| 173 |
+
|
| 174 |
+
# Durations
|
| 175 |
+
|
| 176 |
+
dur = int(max(0, min(255, dur)) / 2)
|
| 177 |
+
|
| 178 |
+
# Pitches
|
| 179 |
+
|
| 180 |
+
ptc = max(1, min(127, e[4]))
|
| 181 |
+
|
| 182 |
+
#=======================================================
|
| 183 |
+
# FINAL NOTE SEQ
|
| 184 |
+
|
| 185 |
+
# Writing final note asynchronously
|
| 186 |
+
|
| 187 |
+
if delta_time != 0:
|
| 188 |
+
melody_chords.extend([delta_time, dur+128, ptc+256])
|
| 189 |
+
if input_strip_notes:
|
| 190 |
+
if len(c) > 1:
|
| 191 |
+
times.append(delta_time)
|
| 192 |
+
durs.append(dur+128)
|
| 193 |
+
else:
|
| 194 |
+
times.append(delta_time)
|
| 195 |
+
durs.append(dur+128)
|
| 196 |
+
else:
|
| 197 |
+
melody_chords.extend([dur+128, ptc+256])
|
| 198 |
+
|
| 199 |
+
pe = e
|
| 200 |
+
|
| 201 |
+
#==================================================================
|
| 202 |
+
|
| 203 |
+
print('=' * 70)
|
| 204 |
+
|
| 205 |
+
print('Sample output events', melody_chords[:5])
|
| 206 |
+
print('=' * 70)
|
| 207 |
+
print('Generating...')
|
| 208 |
+
|
| 209 |
+
output = []
|
| 210 |
+
|
| 211 |
+
max_chords_limit = 8
|
| 212 |
+
temperature=0.9
|
| 213 |
+
num_memory_tokens=4096
|
| 214 |
+
|
| 215 |
+
output = []
|
| 216 |
+
|
| 217 |
+
idx = 0
|
| 218 |
+
|
| 219 |
+
for c in chords[:input_num_tokens]:
|
| 220 |
+
|
| 221 |
+
output.append(c)
|
| 222 |
+
|
| 223 |
+
if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations':
|
| 224 |
+
output.append(times[idx])
|
| 225 |
+
|
| 226 |
+
if input_conditioning_type == 'Chords-Times-Durations':
|
| 227 |
+
output.append(durs[idx])
|
| 228 |
+
|
| 229 |
+
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
|
| 230 |
+
|
| 231 |
+
o = 0
|
| 232 |
+
|
| 233 |
+
ncount = 0
|
| 234 |
+
|
| 235 |
+
while o < 384 and ncount < max_chords_limit:
|
| 236 |
+
with ctx:
|
| 237 |
+
out = model.generate(x[-num_memory_tokens:],
|
| 238 |
+
1,
|
| 239 |
+
temperature=temperature,
|
| 240 |
+
return_prime=False,
|
| 241 |
+
verbose=False)
|
| 242 |
+
|
| 243 |
+
o = out.tolist()[0][0]
|
| 244 |
+
|
| 245 |
+
if 256 <= o < 384:
|
| 246 |
+
ncount += 1
|
| 247 |
+
|
| 248 |
+
if o < 384:
|
| 249 |
+
x = torch.cat((x, out), 1)
|
| 250 |
+
|
| 251 |
+
outy = x.tolist()[0][len(output):]
|
| 252 |
+
|
| 253 |
+
output.extend(outy)
|
| 254 |
+
|
| 255 |
+
idx += 1
|
| 256 |
+
|
| 257 |
+
if idx == len(chords[:input_num_tokens])-1:
|
| 258 |
+
break
|
| 259 |
+
|
| 260 |
+
print('=' * 70)
|
| 261 |
+
print('Done!')
|
| 262 |
+
print('=' * 70)
|
| 263 |
+
|
| 264 |
+
#===============================================================================
|
| 265 |
+
print('Rendering results...')
|
| 266 |
+
|
| 267 |
+
print('=' * 70)
|
| 268 |
+
print('Sample INTs', output[:12])
|
| 269 |
+
print('=' * 70)
|
| 270 |
+
|
| 271 |
+
out1 = output
|
| 272 |
+
|
| 273 |
+
if len(out1) != 0:
|
| 274 |
+
|
| 275 |
+
song = out1
|
| 276 |
+
song_f = []
|
| 277 |
+
|
| 278 |
+
time = 0
|
| 279 |
+
dur = 0
|
| 280 |
+
vel = 90
|
| 281 |
+
pitch = 0
|
| 282 |
+
channel = 0
|
| 283 |
+
|
| 284 |
+
patches = [0] * 16
|
| 285 |
+
|
| 286 |
+
channel = 0
|
| 287 |
+
|
| 288 |
+
for ss in song:
|
| 289 |
+
|
| 290 |
+
if 0 <= ss < 128:
|
| 291 |
+
|
| 292 |
+
time += ss * 32
|
| 293 |
+
|
| 294 |
+
if 128 <= ss < 256:
|
| 295 |
+
|
| 296 |
+
dur = (ss-128) * 32
|
| 297 |
+
|
| 298 |
+
if 256 <= ss < 384:
|
| 299 |
+
|
| 300 |
+
pitch = (ss-256)
|
| 301 |
+
|
| 302 |
+
vel = max(40, pitch)
|
| 303 |
+
|
| 304 |
+
song_f.append(['note', time, dur, channel, pitch, vel, 0])
|
| 305 |
+
|
| 306 |
+
fn1 = "Chords-Progressions-Transformer-Composition"
|
| 307 |
+
|
| 308 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
| 309 |
+
output_signature = 'Chords Progressions Transformer',
|
| 310 |
+
output_file_name = fn1,
|
| 311 |
+
track_name='Project Los Angeles',
|
| 312 |
+
list_of_MIDI_patches=patches
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
new_fn = fn1+'.mid'
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
audio = midi_to_colab_audio(new_fn,
|
| 319 |
+
soundfont_path=soundfont,
|
| 320 |
+
sample_rate=16000,
|
| 321 |
+
volume_scale=10,
|
| 322 |
+
output_for_gradio=True
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
print('Done!')
|
| 326 |
+
print('=' * 70)
|
| 327 |
+
|
| 328 |
+
#========================================================
|
| 329 |
+
|
| 330 |
+
output_midi_title = str(fn1)
|
| 331 |
+
output_midi_summary = str(song_f[:3])
|
| 332 |
+
output_midi = str(new_fn)
|
| 333 |
+
output_audio = (16000, audio)
|
| 334 |
+
|
| 335 |
+
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
|
| 336 |
+
|
| 337 |
+
print('Output MIDI file name:', output_midi)
|
| 338 |
+
print('Output MIDI title:', output_midi_title)
|
| 339 |
+
print('Output MIDI summary:', '')
|
| 340 |
+
print('=' * 70)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
#========================================================
|
| 344 |
+
|
| 345 |
+
print('-' * 70)
|
| 346 |
+
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
| 347 |
+
print('-' * 70)
|
| 348 |
+
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
| 349 |
+
|
| 350 |
+
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
|
| 351 |
+
|
| 352 |
+
# =================================================================================================
|
| 353 |
+
|
| 354 |
+
if __name__ == "__main__":
|
| 355 |
+
|
| 356 |
+
PDT = timezone('US/Pacific')
|
| 357 |
+
|
| 358 |
+
print('=' * 70)
|
| 359 |
+
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
| 360 |
+
print('=' * 70)
|
| 361 |
+
|
| 362 |
+
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
|
| 363 |
+
|
| 364 |
+
app = gr.Blocks()
|
| 365 |
+
with app:
|
| 366 |
+
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Transformer</h1>")
|
| 367 |
+
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords-conditioned music transformer</h1>")
|
| 368 |
+
gr.Markdown(
|
| 369 |
+
"\n\n"
|
| 370 |
+
"Generate music based on chords progressions\n\n"
|
| 371 |
+
"Check out [Chords Progressions Transformer](https://github.com/asigalov61/Chords-Progressions-Transformer) on GitHub!\n\n"
|
| 372 |
+
"[Open In Colab]"
|
| 373 |
+
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)"
|
| 374 |
+
" for faster execution and endless generation"
|
| 375 |
+
)
|
| 376 |
+
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
|
| 377 |
+
|
| 378 |
+
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
| 379 |
+
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for")
|
| 380 |
+
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type")
|
| 381 |
+
input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
|
| 382 |
+
|
| 383 |
+
run_btn = gr.Button("generate", variant="primary")
|
| 384 |
+
|
| 385 |
+
gr.Markdown("## Generation results")
|
| 386 |
+
|
| 387 |
+
output_midi_title = gr.Textbox(label="Output MIDI title")
|
| 388 |
+
output_midi_summary = gr.Textbox(label="Output MIDI summary")
|
| 389 |
+
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
|
| 390 |
+
output_plot = gr.Plot(label="Output MIDI score plot")
|
| 391 |
+
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
|
| 395 |
+
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
|
| 396 |
+
|
| 397 |
+
gr.Examples(
|
| 398 |
+
[["Chords-Progressions-Transformer-Piano-Seed-1.mid", 128, "Chords", False],
|
| 399 |
+
["Chords-Progressions-Transformer-Piano-Seed-2.mid", 128, "Chords-Times", False],
|
| 400 |
+
["Chords-Progressions-Transformer-Piano-Seed-3.mid", 128, "Chords-Times-Durations", False],
|
| 401 |
+
["Chords-Progressions-Transformer-Piano-Seed-4.mid", 128, "Chords", False],
|
| 402 |
+
["Chords-Progressions-Transformer-Piano-Seed-5.mid", 128, "Chords-Times", False],
|
| 403 |
+
["Chords-Progressions-Transformer-Piano-Seed-6.mid", 128, "Chords-Times-Durations", False],
|
| 404 |
+
["Chords-Progressions-Transformer-MI-Seed-1.mid", 128, "Chords", False],
|
| 405 |
+
["Chords-Progressions-Transformer-MI-Seed-2.mid", 128, "Chords-Times", False],
|
| 406 |
+
["Chords-Progressions-Transformer-MI-Seed-3.mid", 128, "Chords-Times-Durations", False],
|
| 407 |
+
["Chords-Progressions-Transformer-MI-Seed-4.mid", 128, "Chords-Times", False],
|
| 408 |
+
["Chords-Progressions-Transformer-MI-Seed-5.mid", 128, "Chords", False],
|
| 409 |
+
["Chords-Progressions-Transformer-MI-Seed-6.mid", 128, "Chords-Times-Durations", False]
|
| 410 |
+
],
|
| 411 |
+
[input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
|
| 412 |
+
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
|
| 413 |
+
GenerateAccompaniment,
|
| 414 |
+
cache_examples=True,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
app.queue().launch()
|
midi_to_colab_audio.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
fluidsynth
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
| 3 |
+
einops
|