Spaces:
Runtime error
Runtime error
Create signals/strategy.py
Browse files- signals/strategy.py +46 -0
signals/strategy.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# signals/strategy.py
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
def generate_buy_signals(data_4h, data_1h):
|
| 6 |
+
"""
|
| 7 |
+
Generates buy signals based on specified criteria.
|
| 8 |
+
|
| 9 |
+
Parameters:
|
| 10 |
+
- data_4h: DataFrame containing 4-hour interval stock data with SMA and price columns.
|
| 11 |
+
- data_1h: DataFrame containing 1-hour interval stock data with SMA and price columns.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
- buy_signals: DataFrame containing timestamps and signals where buy conditions are met.
|
| 15 |
+
"""
|
| 16 |
+
# Criteria 1 & 2 for 4-hour data
|
| 17 |
+
criteria_4h = (data_4h['SMA_21'] > data_4h['SMA_50'])
|
| 18 |
+
|
| 19 |
+
# Criteria 3 & 4 for 1-hour data
|
| 20 |
+
crossed_above = (data_1h['SMA_21'].shift(2) < data_1h['SMA_50'].shift(2)) & (data_1h['SMA_21'] > data_1h['SMA_50'])
|
| 21 |
+
was_below = (data_1h['SMA_21'].shift(15) < data_1h['SMA_50'].shift(15))
|
| 22 |
+
|
| 23 |
+
# Combine criteria
|
| 24 |
+
buy_signals = data_1h[crossed_above & was_below & criteria_4h.reindex(data_1h.index, method='nearest')]
|
| 25 |
+
|
| 26 |
+
return buy_signals[['SMA_21', 'SMA_50']]
|
| 27 |
+
|
| 28 |
+
def generate_sell_signals(data_4h):
|
| 29 |
+
"""
|
| 30 |
+
Generates sell signals based on specified criteria.
|
| 31 |
+
|
| 32 |
+
Parameters:
|
| 33 |
+
- data_4h: DataFrame containing 4-hour interval stock data with Bollinger Bands and price columns.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
- sell_signals: DataFrame containing timestamps and signals where sell conditions are met.
|
| 37 |
+
"""
|
| 38 |
+
# Criteria for sell signal
|
| 39 |
+
crossed_above_bb = data_4h['Close'] > data_4h['BB_Upper']
|
| 40 |
+
|
| 41 |
+
sell_signals = data_4h[crossed_above_bb]
|
| 42 |
+
|
| 43 |
+
return sell_signals[['Close', 'BB_Upper']]
|
| 44 |
+
|
| 45 |
+
# Example usage would require actual loaded data with the appropriate columns calculated.
|
| 46 |
+
# This example assumes `data_4h` and `data_1h` DataFrames are prepared and include 'Close', 'SMA_21', 'SMA_50', and Bollinger Bands columns.
|