Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files
README.md
CHANGED
|
@@ -1,14 +1 @@
|
|
| 1 |
-
|
| 2 |
-
title: Machine Translation
|
| 3 |
-
emoji: 🐠
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: red
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.43.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: cc0-1.0
|
| 11 |
-
short_description: translate english to vietnamese
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
# Machine_Translation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import requests
|
| 5 |
+
from model import TransformerSeq2Seq,translate
|
| 6 |
+
from utils import load_tokenizers_and_embeddings
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# class mô hình của bạn
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
# ===== 1. Load model và tokenizer khi khởi động server =====
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
# ===== Load 1 lần khi start server =====
|
| 18 |
+
resources = load_tokenizers_and_embeddings()
|
| 19 |
+
tokenizer_vi = resources["tokenizer_vi"]
|
| 20 |
+
embedding_matrix_vi = resources["embedding_vi"]
|
| 21 |
+
tokenizer_en = resources["tokenizer_en"]
|
| 22 |
+
embedding_matrix_en = resources["embedding_en"]
|
| 23 |
+
device = resources["device"]
|
| 24 |
+
|
| 25 |
+
print("✅ Tokenizers & embeddings loaded!")
|
| 26 |
+
if isinstance(embedding_matrix_en, torch.Tensor):
|
| 27 |
+
embed_dim = embedding_matrix_en.size(1)
|
| 28 |
+
else: # nn.Embedding
|
| 29 |
+
embed_dim = embedding_matrix_en.embedding_dim
|
| 30 |
+
max_len = 128
|
| 31 |
+
batch_size = 32
|
| 32 |
+
# Load model
|
| 33 |
+
model = TransformerSeq2Seq(
|
| 34 |
+
embed_dim=embed_dim,
|
| 35 |
+
vocab_size=tokenizer_vi.vocab_size, # hoặc len(tokenizer_vi)
|
| 36 |
+
embedding_decoder=embedding_matrix_vi, # embedding target đã có sẵn
|
| 37 |
+
num_heads=4,
|
| 38 |
+
num_layers=2,
|
| 39 |
+
dim_feedforward=256,
|
| 40 |
+
dropout=0.1,
|
| 41 |
+
freeze_decoder_emb=True,
|
| 42 |
+
max_len=max_len
|
| 43 |
+
)
|
| 44 |
+
MODEL_URL = "https://huggingface.co/nemabruh404/Machine_Translation/resolve/main/model_state_dict.pt"
|
| 45 |
+
|
| 46 |
+
# Fetch model từ Hub
|
| 47 |
+
checkpoint_bytes = BytesIO(requests.get(MODEL_URL).content)
|
| 48 |
+
checkpoint = torch.load(checkpoint_bytes, map_location=device)
|
| 49 |
+
|
| 50 |
+
# Load state dict
|
| 51 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
| 52 |
+
model.to(device)
|
| 53 |
+
model.eval()
|
| 54 |
+
|
| 55 |
+
print("✅ Model loaded from Hugging Face Hub")
|
| 56 |
+
print("Model loaded")
|
| 57 |
+
class TranslationRequest(BaseModel):
|
| 58 |
+
text: str
|
| 59 |
+
# ===== Endpoint dịch =====
|
| 60 |
+
@app.post("/translate")
|
| 61 |
+
def translate_api(req: TranslationRequest):
|
| 62 |
+
output = translate(
|
| 63 |
+
model=model,
|
| 64 |
+
src_sentence=req.text,
|
| 65 |
+
tokenizer_src=tokenizer_en, # tiếng Anh -> input
|
| 66 |
+
tokenizer_tgt=tokenizer_vi, # tiếng Việt -> output
|
| 67 |
+
embedding_src=embedding_matrix_en,
|
| 68 |
+
device=device,
|
| 69 |
+
max_len=max_len
|
| 70 |
+
)
|
| 71 |
+
return {"input": req.text, "translation": output}
|
main.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app import app
|
| 2 |
+
import uvicorn
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
port = int(os.environ.get("PORT", 10000)) # Render sẽ set PORT
|
| 6 |
+
if __name__ == "__main__":
|
| 7 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
model.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
# ---------------- Positional Encoding ----------------
|
| 9 |
+
class PositionalEncoding(nn.Module):
|
| 10 |
+
def __init__(self, d_model, max_len=512):
|
| 11 |
+
super().__init__()
|
| 12 |
+
pe = torch.zeros(max_len, d_model)
|
| 13 |
+
position = torch.arange(0, max_len).unsqueeze(1).float()
|
| 14 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
|
| 15 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 16 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 17 |
+
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
| 18 |
+
self.register_buffer('pe', pe)
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
# x: (B, T, D)
|
| 22 |
+
return x + self.pe[:, :x.size(1)].to(x.device)
|
| 23 |
+
|
| 24 |
+
# ---------------- Transformer (sửa để match training) ----------------
|
| 25 |
+
class TransformerSeq2Seq(nn.Module):
|
| 26 |
+
"""
|
| 27 |
+
Thiết kế sao cho forward(src_embedded, tgt_input_ids, src_attn_mask=None, tgt_attn_mask=None)
|
| 28 |
+
- src_embedded: (B, S, E) — bạn có thể pass embedding matrix bên ngoài (embedding_src[src_ids])
|
| 29 |
+
- tgt_input_ids: (B, T) — token ids cho decoder input (BOS.. token_{n-1})
|
| 30 |
+
- src_attn_mask / tgt_attn_mask: (B, S) / (B, T) with 1 for real tokens, 0 for pad
|
| 31 |
+
"""
|
| 32 |
+
def __init__(self,
|
| 33 |
+
embed_dim,
|
| 34 |
+
vocab_size, # target vocab size (output dim)
|
| 35 |
+
embedding_decoder=None, # pretrained weights (np array or torch.Tensor) or None
|
| 36 |
+
num_heads=2,
|
| 37 |
+
num_layers=2,
|
| 38 |
+
dim_feedforward=256,
|
| 39 |
+
dropout=0.1,
|
| 40 |
+
freeze_decoder_emb=True,
|
| 41 |
+
max_len=512):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.embed_dim = embed_dim
|
| 44 |
+
self.vocab_size = vocab_size
|
| 45 |
+
|
| 46 |
+
# positional encoding
|
| 47 |
+
self.pos_encoder = PositionalEncoding(embed_dim, max_len=max_len)
|
| 48 |
+
|
| 49 |
+
# decoder embedding (pretrained optional)
|
| 50 |
+
if embedding_decoder is None:
|
| 51 |
+
self.embedding_decoder = nn.Embedding(vocab_size, embed_dim)
|
| 52 |
+
else:
|
| 53 |
+
if not isinstance(embedding_decoder, torch.Tensor):
|
| 54 |
+
embedding_decoder = torch.tensor(embedding_decoder, dtype=torch.float)
|
| 55 |
+
self.embedding_decoder = nn.Embedding.from_pretrained(embedding_decoder, freeze=freeze_decoder_emb)
|
| 56 |
+
|
| 57 |
+
# encoder/decoder (batch_first True -> inputs shape (B, T, E))
|
| 58 |
+
self.encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads,
|
| 59 |
+
dim_feedforward=dim_feedforward, dropout=dropout,
|
| 60 |
+
batch_first=True)
|
| 61 |
+
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
|
| 62 |
+
|
| 63 |
+
self.decoder_layer = nn.TransformerDecoderLayer(d_model=embed_dim, nhead=num_heads,
|
| 64 |
+
dim_feedforward=dim_feedforward, dropout=dropout,
|
| 65 |
+
batch_first=True)
|
| 66 |
+
self.decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)
|
| 67 |
+
|
| 68 |
+
self.output_proj = nn.Linear(embed_dim, vocab_size)
|
| 69 |
+
|
| 70 |
+
def forward(self, src_embedded, tgt_input_ids, src_attn_mask=None, tgt_attn_mask=None):
|
| 71 |
+
"""
|
| 72 |
+
src_embedded : (B, S, E)
|
| 73 |
+
tgt_input_ids: (B, T)
|
| 74 |
+
src_attn_mask : (B, S) mask: 1 real token, 0 pad (optional)
|
| 75 |
+
tgt_attn_mask : (B, T) same
|
| 76 |
+
"""
|
| 77 |
+
device = src_embedded.device
|
| 78 |
+
# tgt embedding
|
| 79 |
+
tgt_embedded = self.embedding_decoder(tgt_input_ids) # (B, T, E)
|
| 80 |
+
|
| 81 |
+
# add positional encoding
|
| 82 |
+
src = self.pos_encoder(src_embedded) # (B, S, E)
|
| 83 |
+
tgt = self.pos_encoder(tgt_embedded) # (B, T, E)
|
| 84 |
+
|
| 85 |
+
# prepare key_padding_mask: True at positions that should be masked (pad positions)
|
| 86 |
+
src_key_padding_mask = None
|
| 87 |
+
tgt_key_padding_mask = None
|
| 88 |
+
if src_attn_mask is not None:
|
| 89 |
+
src_key_padding_mask = (src_attn_mask == 0).to(device) # (B, S), bool
|
| 90 |
+
if tgt_attn_mask is not None:
|
| 91 |
+
tgt_key_padding_mask = (tgt_attn_mask == 0).to(device) # (B, T)
|
| 92 |
+
|
| 93 |
+
# encode
|
| 94 |
+
memory = self.encoder(src, src_key_padding_mask=src_key_padding_mask) # (B, S, E)
|
| 95 |
+
|
| 96 |
+
# causal mask for decoder (T x T)
|
| 97 |
+
T = tgt.size(1)
|
| 98 |
+
if T > 0:
|
| 99 |
+
tgt_mask = torch.triu(torch.full((T, T), float('-inf'), device=device), diagonal=1)
|
| 100 |
+
else:
|
| 101 |
+
tgt_mask = None
|
| 102 |
+
|
| 103 |
+
# decode
|
| 104 |
+
output = self.decoder(tgt, memory,
|
| 105 |
+
tgt_mask=tgt_mask,
|
| 106 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
| 107 |
+
memory_key_padding_mask=src_key_padding_mask) # (B, T, E)
|
| 108 |
+
|
| 109 |
+
logits = self.output_proj(output) # (B, T, vocab)
|
| 110 |
+
return logits
|
| 111 |
+
|
| 112 |
+
# ---------------- Helpers to apply embedding_src (tensor or nn.Embedding) ----------------
|
| 113 |
+
def apply_src_embedding(embedding_src, src_ids):
|
| 114 |
+
"""
|
| 115 |
+
embedding_src can be:
|
| 116 |
+
- torch.Tensor of shape (vocab_src, embed_dim) -> indexing
|
| 117 |
+
- nn.Embedding instance -> call( ids )
|
| 118 |
+
src_ids: LongTensor (B, S)
|
| 119 |
+
return: (B, S, E) float tensor on same device as src_ids
|
| 120 |
+
"""
|
| 121 |
+
if isinstance(embedding_src, nn.Embedding):
|
| 122 |
+
return embedding_src(src_ids)
|
| 123 |
+
else:
|
| 124 |
+
# assume it's a tensor/ndarray
|
| 125 |
+
if not isinstance(embedding_src, torch.Tensor):
|
| 126 |
+
embedding_src = torch.tensor(embedding_src, dtype=torch.float, device=src_ids.device)
|
| 127 |
+
else:
|
| 128 |
+
embedding_src = embedding_src.to(src_ids.device)
|
| 129 |
+
return embedding_src[src_ids]
|
| 130 |
+
@torch.no_grad()
|
| 131 |
+
def translate(model, src_sentence, tokenizer_src, tokenizer_tgt, embedding_src, device, max_len=50):
|
| 132 |
+
model.eval()
|
| 133 |
+
inputs = tokenizer_src([src_sentence], return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 134 |
+
src_ids = inputs["input_ids"].to(device) # (1, S)
|
| 135 |
+
src_attn = inputs.get("attention_mask", None)
|
| 136 |
+
if src_attn is not None:
|
| 137 |
+
src_attn = src_attn.to(device)
|
| 138 |
+
|
| 139 |
+
src_embedded = apply_src_embedding(embedding_src, src_ids) # (1, S, E)
|
| 140 |
+
|
| 141 |
+
decoded_ids = [tokenizer_tgt.cls_token_id]
|
| 142 |
+
for _ in range(max_len):
|
| 143 |
+
decoder_input = torch.tensor([decoded_ids], device=device)
|
| 144 |
+
# for decode we don't need tgt_attn_mask (we build causal mask inside model)
|
| 145 |
+
logits = model(src_embedded, decoder_input, src_attn_mask=src_attn, tgt_attn_mask=None)
|
| 146 |
+
next_token = logits[:, -1, :].argmax(dim=-1).item()
|
| 147 |
+
decoded_ids.append(next_token)
|
| 148 |
+
if next_token == tokenizer_tgt.sep_token_id:
|
| 149 |
+
break
|
| 150 |
+
|
| 151 |
+
return tokenizer_tgt.decode(decoded_ids, skip_special_tokens=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
requests
|
| 6 |
+
pydantic
|
utils.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3 |
+
|
| 4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 5 |
+
|
| 6 |
+
def load_tokenizers_and_embeddings():
|
| 7 |
+
# ===== Vietnamese PhoBERT =====
|
| 8 |
+
tokenizer_vi = AutoTokenizer.from_pretrained("vinai/phobert-base")
|
| 9 |
+
model_vi = AutoModel.from_pretrained("vinai/phobert-base").to(device)
|
| 10 |
+
embedding_matrix_vi = model_vi.embeddings.word_embeddings.weight
|
| 11 |
+
|
| 12 |
+
# ===== English BERT =====
|
| 13 |
+
tokenizer_en = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
|
| 14 |
+
model_en = AutoModel.from_pretrained("bert-base-cased-finetuned-mrpc").to(device)
|
| 15 |
+
embedding_matrix_en = model_en.embeddings.word_embeddings.weight
|
| 16 |
+
|
| 17 |
+
return {
|
| 18 |
+
"tokenizer_vi": tokenizer_vi,
|
| 19 |
+
"embedding_vi": embedding_matrix_vi,
|
| 20 |
+
"tokenizer_en": tokenizer_en,
|
| 21 |
+
"embedding_en": embedding_matrix_en,
|
| 22 |
+
"device": device
|
| 23 |
+
}
|