File size: 9,056 Bytes
8b09391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
import os
import time

import cv2
import numpy as np
import requests
import torch
import wget
import yolov7
from mobile_sam import SamPredictor, sam_model_registry
from PIL import Image
from tqdm import tqdm
from transformers import YolosForObjectDetection, YolosImageProcessor

from images_to_video import VideoCreator
from video_to_images import ImageCreator


def download_mobile_sam_weight(path):
    if not os.path.exists(path):
        sam_weights = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
        for i in range(2, len(path.split("/"))):
            temp = path.split("/")[:i]
            cur_path = "/".join(temp)
            if not os.path.isdir(cur_path):
                os.mkdir(cur_path)
        model_name = path.split("/")[-1]
        if model_name in sam_weights:
            wget.download(sam_weights, path)
        else:
            raise NameError(
                "There is no pretrained weight to download for %s, you need to provide a path to segformer weights."
                % model_name
            )


def get_closest_bbox(bbox_list, bbox_target):
    """
    Given a list of bounding boxes, find the one that is closest to the target bounding box.
    Args:
        bbox_list: list of bounding boxes
        bbox_target: target bounding box
    Returns:
        closest bounding box

    """
    min_dist = 100000000
    min_idx = 0
    for idx, bbox in enumerate(bbox_list):
        dist = np.linalg.norm(bbox - bbox_target)
        if dist < min_dist:
            min_dist = dist
            min_idx = idx
    return bbox_list[min_idx]


def get_bboxes(image_file, image, model, image_processor, threshold=0.9):
    if image_processor is None:
        results = model(image_file)
        predictions = results.pred[0]
        boxes = predictions[:, :4].detach().numpy()
        return boxes
    else:
        inputs = image_processor(images=image, return_tensors="pt")
        outputs = model(**inputs)

        target_sizes = torch.tensor([image.size[::-1]])
        results = image_processor.post_process_object_detection(
            outputs, threshold=threshold, target_sizes=target_sizes
        )[0]

        return results["boxes"].detach().numpy()


def segment_video(
    video_filename,
    dir_frames,
    image_start,
    image_end,
    bbox_file,
    skip_vid2im,
    mobile_sam_weights,
    auto_detect=False,
    tracker_name="yolov7",
    background_color="#009000",
    output_dir="output_frames",
    output_video="output.mp4",
    pbar=False,
    reverse_mask=False,
):
    if not skip_vid2im:
        vid_to_im = ImageCreator(
            video_filename,
            dir_frames,
            image_start=image_start,
            image_end=image_end,
            pbar=pbar,
        )
        vid_to_im.get_images()
    # Get fps of video
    vid = cv2.VideoCapture(video_filename)
    fps = vid.get(cv2.CAP_PROP_FPS)
    vid.release()
    background_color = background_color.lstrip("#")
    background_color = (
        np.array([int(background_color[i : i + 2], 16) for i in (0, 2, 4)]) / 255.0
    )

    with open(bbox_file, "r") as f:
        bbox_orig = [int(coord) for coord in f.read().split(" ")]
    download_mobile_sam_weight(mobile_sam_weights)
    if image_end == 0:
        frames = sorted(os.listdir(dir_frames))[image_start:]
    else:
        frames = sorted(os.listdir(dir_frames))[image_start:image_end]

    model_type = "vit_t"

    if torch.backends.mps.is_available():
        device = "mps"
    elif torch.cuda.is_available():

        device = "cuda"
    else:
        device = "cpu"
    sam = sam_model_registry[model_type](checkpoint=mobile_sam_weights)
    sam.to(device=device)
    sam.eval()

    predictor = SamPredictor(sam)

    if not auto_detect:
        if tracker_name == "yolov7":
            model = yolov7.load("kadirnar/yolov7-tiny-v0.1", hf_model=True)
            model.conf = 0.25  # NMS confidence threshold
            model.iou = 0.45  # NMS IoU threshold
            model.classes = None
            image_processor = None
        else:
            model = YolosForObjectDetection.from_pretrained("hustvl/yolos-tiny")
            image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")

    output_frames = []

    if pbar:
        pb = tqdm(frames)
    else:
        pb = frames

    processed_frames = 0
    init_time = time.time()
    for frame in pb:
        processed_frames += 1
        image_file = dir_frames + "/" + frame
        image_pil = Image.open(image_file)
        image_np = np.array(image_pil)
        if not auto_detect:
            bboxes = get_bboxes(image_file, image_pil, model, image_processor)
            closest_bbox = get_closest_bbox(bboxes, bbox_orig)
            input_box = np.array(closest_bbox)
        else:
            input_box = np.array([0, 0, image_np.shape[1], image_np.shape[0]])
        predictor.set_image(image_np)
        masks, _, _ = predictor.predict(
            point_coords=None,
            point_labels=None,
            box=input_box[None, :],
            multimask_output=True,
        )
        if reverse_mask:
            mask = masks[0]
            h, w = mask.shape[-2:]
            mask_image = (
                (mask).reshape(h, w, 1) * background_color.reshape(1, 1, -1)
            ) * 255
            masked_image = image_np * (1 - mask).reshape(h, w, 1)
            masked_image = masked_image + mask_image
            output_frames.append(masked_image)
        else:
            mask = masks[0]
            h, w = mask.shape[-2:]
            mask_image = (
                (1 - mask).reshape(h, w, 1) * background_color.reshape(1, 1, -1)
            ) * 255
            masked_image = image_np * mask.reshape(h, w, 1)
            masked_image = masked_image + mask_image
            output_frames.append(masked_image)

        if not pbar and processed_frames % 10 == 0:
            remaining_time = (
                (time.time() - init_time)
                / processed_frames
                * (len(frames) - processed_frames)
            )
            remaining_time = int(remaining_time)
            remaining_time_str = f"{remaining_time//60}m {remaining_time%60}s"
            print(
                f"Processed frame {processed_frames}/{len(frames)} - Remaining time: {remaining_time_str}"
            )
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)

    zfill_max = len(str(len(output_frames)))
    for idx, frame in enumerate(output_frames):
        cv2.imwrite(
            f"{output_dir}/frame_{str(idx).zfill(zfill_max)}.png",
            frame,
        )
    vid_creator = VideoCreator(output_dir, output_video, pbar=pbar)
    vid_creator.create_video(fps=int(fps))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--video_filename",
        default="assets/example.mp4",
        type=str,
        help="path to the video",
    )
    parser.add_argument(
        "--dir_frames",
        type=str,
        default="frames",
        help="path to the directory in which all input frames will be stored",
    )
    parser.add_argument(
        "--image_start", type=int, default=0, help="first image to be stored"
    )
    parser.add_argument(
        "--image_end",
        type=int,
        default=0,
        help="last image to be stored, last one if 0",
    )
    parser.add_argument(
        "--bbox_file",
        type=str,
        default="bbox.txt",
        help="path to the bounding box text file",
    )
    parser.add_argument(
        "--skip_vid2im",
        action="store_true",
        help="whether to write the video frames as images",
    )
    parser.add_argument(
        "--mobile_sam_weights",
        type=str,
        default="./models/mobile_sam.pt",
        help="path to MobileSAM weights",
    )

    parser.add_argument(
        "--tracker_name",
        type=str,
        default="yolov7",
        help="tracker name",
        choices=["yolov7", "yoloS"],
    )

    parser.add_argument(
        "--output_dir",
        type=str,
        default="output_frames",
        help="directory to store the output frames",
    )

    parser.add_argument(
        "--output_video",
        type=str,
        default="output.mp4",
        help="path to store the output video",
    )
    parser.add_argument(
        "--auto_detect",
        action="store_true",
        help="whether to use a bounding box to force the model to segment the object",
    )
    parser.add_argument(
        "--background_color",
        type=str,
        default="#009000",
        help="background color for the output (hex)",
    )
    args = parser.parse_args()

    segment_video(
        args.video_filename,
        args.dir_frames,
        args.image_start,
        args.image_end,
        args.bbox_file,
        args.skip_vid2im,
        args.mobile_sam_weights,
        args.auto_detect,
        args.output_dir,
        args.output_video,
        args.tracker_name,
        args.background_color,
    )