import torch import torch.nn as nn from transformers import AutoModel, AutoTokenizer DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") class TransformerRepresentation(nn.Module): def __init__(self, model_name='bert-base-uncased', transformer_kwargs={'attention_probs_dropout_prob': 0.1, 'hidden_dropout_prob': 0.1}, device=DEFAULT_DEVICE): super(TransformerRepresentation, self).__init__() self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name, output_hidden_states=True, **transformer_kwargs) self.embedding_dim = self.model.config.hidden_size self.device = device @staticmethod def add_subword_maps(texts, encodings): for encoding, t in zip(encodings, texts): encoding.subword_map = [encoding.word_to_tokens(i) for i, _ in enumerate(t)] @staticmethod def apply_token_pooling_strategy(outputs, encodings, strategy='first'): """ Applies a token pooling strategy for pretokenized inputs based on a sub-word mapping of words to tokens. :param outputs: Output of the application of a `TransformerRepresentation.model` to a pretokenized input. :param encodings: Encodings from the application of `TransformerRepresentation.tokenizer` to a pretokenized input. :param strategy: One of ['first', 'last', 'sum', 'average']. Defaults to 'first'. :return: """ vec_map = [[vecs[m[0]:m[1]] for m in encoding.subword_map if m is not None] # Only return vectors for words that were not truncated during tokenization for vecs, encoding in zip(outputs.last_hidden_state.unbind(), encodings)] if strategy == 'first': return [torch.stack([vec[0] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map] elif strategy == 'last': return [torch.stack([vec[-1] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map] elif strategy == 'sum': return [torch.stack([torch.sum(vec, dim=0) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map] elif strategy == 'average': return [torch.stack([torch.sum(vec, dim=0)/len(vec) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map] return vec_map def add_special_tokens(self, tokens): self.tokenizer.add_special_tokens({'additional_special_tokens': self.tokenizer.additional_special_tokens + tokens}) self.model.resize_token_embeddings(len(self.tokenizer)) def forward(self, text, is_pretokenized=False, add_special_tokens=True, token_pooling='first'): inputs = self.tokenizer(text, padding='longest', is_split_into_words=is_pretokenized, add_special_tokens=add_special_tokens, return_tensors='pt', max_length=512, truncation=True).to(self.device) output = self.model(**inputs.to(self.device)) if is_pretokenized: self.add_subword_maps(text, [i for i in inputs.encodings]) output.pooled_tokens = self.apply_token_pooling_strategy( output, [i for i in inputs.encodings], strategy=token_pooling) return output if __name__ == 'main': toks = ['Tom', 'Thabane', 'resigned', 'in', 'October', 'last', 'year', 'to', 'form', 'the', 'All', 'Basotho', 'Convention', '-LRB-', 'ABC', '-RRB-', ',', 'crossing', 'the', 'floor', 'with', '17', 'members', 'of', 'parliament', ',', 'causing', 'constitutional', 'monarch', 'King', 'Letsie', 'III', 'to', 'dissolve', 'parliament', 'and', 'call', 'the', 'snap', 'election', '.'] e1_type = 'PERSON' e2_type = 'ORGANIZATION' e1_tokens = [0, 1] e2_tokens = [10, 12] text = [['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'], ['Peter', 'Blackburn'], ['BRUSSELS', '1996-08-22'], ['The', 'European', 'Commission', 'said', 'on', 'Thursday', 'it', 'disagreed', 'with', 'German', 'advice', 'to', 'consumers', 'to', 'shun', 'British', 'lamb', 'until', 'scientists', 'determine', 'whether', 'mad', 'cow', 'disease', 'can', 'be', 'transmitted', 'to', 'sheep', '.'], ['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.'], ['"', 'We', 'do', "n't", 'support', 'any', 'such', 'recommendation', 'because', 'we', 'do', "n't", 'see', 'any', 'grounds', 'for', 'it', ',', '"', 'the', 'Commission', "'s", 'chief', 'spokesman', 'Nikolaus', 'van', 'der', 'Pas', 'told', 'a', 'news', 'briefing', '.'], ['He', 'said', 'further', 'scientific', 'study', 'was', 'required', 'and', 'if', 'it', 'was', 'found', 'that', 'action', 'was', 'needed', 'it', 'should', 'be', 'taken', 'by', 'the', 'European', 'Union', '.'], ['He', 'said', 'a', 'proposal', 'last', 'month', 'by', 'EU', 'Farm', 'Commissioner', 'Franz', 'Fischler', 'to', 'ban', 'sheep', 'brains', ',', 'spleens', 'and', 'spinal', 'cords', 'from', 'the', 'human', 'and', 'animal', 'food', 'chains', 'was', 'a', 'highly', 'specific', 'and', 'precautionary', 'move', 'to', 'protect', 'human', 'health', '.']] model = TransformerRepresentation()