Spaces:
Build error
Build error
import gradio as gr | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import os | |
def predict_label(text): | |
ip = text.split() | |
ip_len = [len(ip)] | |
span_scores = extract_spannet_scores(span_model,ip,ip_len, pos_col=1, task_col=2) | |
span_pooled_scores = pool_span_scores(span_scores, ip_len) | |
msa_span_scores = extract_spannet_scores(msa_span_model,ip,ip_len, pos_col=1, task_col=2, pos='not none') | |
msa_pooled_scores = pool_span_scores(msa_span_scores, ip_len) | |
ensemble_span_scores = [score for scores in [span_scores, msa_span_scores] for score in scores] | |
ensemble_pooled_scores = pool_span_scores(ensemble_span_scores, ip_len) | |
ent_scores = extract_ent_scores(entity_model,ip,ensemble_pooled_scores, pos_col=1, task_col=2) | |
combined_sequences, ent_pred_tags = pool_ent_scores(ent_scores, ip_len) | |
return combined_sequences | |
if __name__ == '__main__': | |
space_key = os.environ.get('key') | |
filenames = ['network.py', 'layers.py', 'utils.py', | |
'representation.py', 'predict.py', 'validate.py'] | |
for file in filenames: | |
hf_hub_download('nehalelkaref/stagedNER', | |
filename=file, | |
local_dir='src', | |
token=space_key) | |
from src.predict import extract_spannet_scores,extract_ent_scores,pool_span_scores,pool_ent_scores | |
from src.network import SpanNet, EntNet | |
from src.validate import entities_from_token_classes | |
span_path = 'models/span.model' | |
msa_span_path = 'models/msa.best.model' | |
entity_path= 'models/entity.msa.model' | |
span_model = SpanNet.load_model(span_path) | |
msa_span_model = SpanNet.load_model(msa_span_path) | |
entity_model = EntNet.load_model(entity_path) | |
# iface= gr.Base(primary_hue="green") | |
iface = gr.Interface(fn=predict_label, inputs="text", outputs="text") | |
iface.launch(show_api=False) | |