Spaces:
Paused
Paused
File size: 5,222 Bytes
d18942e 6836f82 d18942e 9ea9021 d18942e 9ea9021 d18942e 9ea9021 d18942e cdadbc1 d18942e 5be5da4 cdadbc1 5be5da4 d18942e 9ea9021 d18942e 9ea9021 d18942e cdadbc1 d18942e 5be5da4 d18942e 238ce74 d18942e e262200 d18942e 6836f82 d18942e fd40b8f d18942e 747d063 e479ffb 66309f2 e479ffb 747d063 e479ffb 747d063 e479ffb d18942e 984f08f d18942e 984f08f d18942e 6836f82 d18942e cdadbc1 149b76e cdadbc1 149b76e 6836f82 d18942e 5be5da4 d18942e cdadbc1 fd40b8f 149b76e fd40b8f cdadbc1 d18942e 9ea9021 d18942e cdadbc1 149b76e cdadbc1 149b76e d18942e 5be5da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import gradio as gr
MODEL_LIST = ["nawhgnuj/KamalaHarris-Llama-3.1-8B-Chat"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID", "nawhgnuj/KamalaHarris-Llama-3.1-8B-Chat")
TITLE = "<h1 style='color: #1565C0; text-align: center;'>Kamala Harris Chatbot</h1>"
KAMALA_AVATAR = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Kamala_Harris_Vice_Presidential_Portrait.jpg/640px-Kamala_Harris_Vice_Presidential_Portrait.jpg"
CSS = """
.chatbot {
background-color: white;
}
.duplicate-button {
margin: auto !important;
color: white !important;
background: #1565C0 !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
color: #1565C0;
}
.contain {object-fit: contain}
.avatar {width: 80px; height: 80px; border-radius: 80%; object-fit: cover;}
.user-message {
background-color: white !important;
color: black !important;
}
.bot-message {
background-color: #1565C0 !important;
color: white !important;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
def generate_response(
message: str,
history: list,
temperature: float,
max_new_tokens: int,
top_p: float,
top_k: int,
):
system_prompt = """You are a Kamala Harris chatbot. You only answer like Harris in style and tone. In every response:
1. Maintain a composed and professional demeanor.
2. Use clear, articulate language to explain complex ideas.
3. Emphasize your experience as a prosecutor and senator if needed.
4. Focus on policy details and their potential impact on Americans.
5. Stress the importance of unity and collaboration.
Crucially, Keep responses concise and impactful."""
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history, temperature, max_new_tokens, top_p, top_k):
user_message = history[-1][0]
bot_response = generate_response(user_message, history[:-1], temperature, max_new_tokens, top_p, top_k)
history[-1][1] = bot_response
return history
with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
gr.HTML(TITLE)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=(None, KAMALA_AVATAR),
height=600,
bubble_full_width=False,
show_label=False,
)
msg = gr.Textbox(
placeholder="Ask Kamala Harris a question",
container=False,
scale=7
)
with gr.Row():
submit = gr.Button("Submit", scale=1, variant="primary")
clear = gr.Button("Clear", scale=1)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.8, step=0.1, label="Temperature")
max_new_tokens = gr.Slider(minimum=50, maximum=1024, value=1024, step=1, label="Max New Tokens")
top_p = gr.Slider(minimum=0.1, maximum=1.5, value=1.0, step=0.1, label="Top-p")
top_k = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Top-k")
gr.Examples(
examples=[
["What are your thoughts on healthcare reform?"],
["How do you plan to address climate change?"],
["What's your stance on education policy?"],
],
inputs=msg,
)
submit.click(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, [chatbot, temperature, max_new_tokens, top_p, top_k], chatbot
)
clear.click(lambda: [], outputs=[chatbot], queue=False)
msg.submit(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, [chatbot, temperature, max_new_tokens, top_p, top_k], chatbot
)
if __name__ == "__main__":
demo.launch() |