Spaces:
Runtime error
Runtime error
add app.py
Browse files- app.py +804 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Graphit
|
| 3 |
+
Copyright (c) 2023-present NAVER Corp.
|
| 4 |
+
Apache-2.0
|
| 5 |
+
"""
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
import base64
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
import json
|
| 12 |
+
import time
|
| 13 |
+
import math
|
| 14 |
+
import argparse
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
import gradio as gr
|
| 19 |
+
|
| 20 |
+
import types
|
| 21 |
+
from typing import Union, List, Optional, Callable
|
| 22 |
+
import diffusers
|
| 23 |
+
import torch
|
| 24 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 25 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 26 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
| 27 |
+
from diffusers.models import AutoencoderKL
|
| 28 |
+
from transformers import CLIPTextModel
|
| 29 |
+
|
| 30 |
+
import datasets
|
| 31 |
+
|
| 32 |
+
from torchvision import transforms
|
| 33 |
+
from torchvision.transforms.functional import to_pil_image, pil_to_tensor
|
| 34 |
+
|
| 35 |
+
import PIL
|
| 36 |
+
from PIL import Image, ImageOps
|
| 37 |
+
|
| 38 |
+
import compodiff
|
| 39 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 40 |
+
from transparent_background import Remover
|
| 41 |
+
from huggingface_hub import hf_hub_url, cached_download
|
| 42 |
+
from RealESRGAN import RealESRGAN
|
| 43 |
+
import einops
|
| 44 |
+
import cv2
|
| 45 |
+
from skimage import segmentation, color, graph
|
| 46 |
+
import random
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def preprocess(image, mode):
|
| 50 |
+
image = np.array(image)[None, :].astype(np.float32) / 255.0
|
| 51 |
+
image = image
|
| 52 |
+
image = image.transpose(0, 3, 1, 2)
|
| 53 |
+
image = 2.0 * image - 1.0
|
| 54 |
+
if mode == 'scr2i':
|
| 55 |
+
image[image > 0.0] = 0.0
|
| 56 |
+
image = torch.from_numpy(image)
|
| 57 |
+
return image
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class GraphitPipeline(StableDiffusionInstructPix2PixPipeline):
|
| 61 |
+
'''
|
| 62 |
+
override:
|
| 63 |
+
/opt/conda/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
|
| 64 |
+
'''
|
| 65 |
+
def prepare_image_latents(
|
| 66 |
+
self, image, mask, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
| 67 |
+
):
|
| 68 |
+
if not isinstance(image, (torch.Tensor, Image.Image, list)):
|
| 69 |
+
raise ValueError(
|
| 70 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
image = image.to(device=device, dtype=dtype)
|
| 74 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 75 |
+
|
| 76 |
+
batch_size = batch_size * num_images_per_prompt
|
| 77 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 78 |
+
raise ValueError(
|
| 79 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 80 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
if isinstance(generator, list):
|
| 84 |
+
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
| 85 |
+
image_latents = torch.cat(image_latents, dim=0)
|
| 86 |
+
else:
|
| 87 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
| 88 |
+
|
| 89 |
+
mask = torch.nn.functional.interpolate(
|
| 90 |
+
mask, #.unsqueeze(0).unsqueeze(0),
|
| 91 |
+
size=(image_latents.shape[-2], image_latents.shape[-1]),
|
| 92 |
+
mode='bicubic',
|
| 93 |
+
align_corners=False,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
| 97 |
+
# expand image_latents for batch_size
|
| 98 |
+
deprecation_message = (
|
| 99 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
| 100 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
| 101 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
| 102 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
| 103 |
+
)
|
| 104 |
+
#deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
| 105 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
| 106 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
| 107 |
+
mask = torch.cat([mask] * additional_image_per_prompt, dim=0)
|
| 108 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
| 109 |
+
raise ValueError(
|
| 110 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
| 111 |
+
)
|
| 112 |
+
else:
|
| 113 |
+
image_latents = torch.cat([image_latents], dim=0)
|
| 114 |
+
image_latents *= 0.18215
|
| 115 |
+
if do_classifier_free_guidance:
|
| 116 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
| 117 |
+
image_latents = torch.cat([image_latents, image_latents], dim=0)
|
| 118 |
+
mask = torch.cat([mask, mask], dim=0)
|
| 119 |
+
image_latents = torch.cat([image_latents, mask], dim=1)
|
| 120 |
+
|
| 121 |
+
return image_latents
|
| 122 |
+
|
| 123 |
+
@torch.no_grad()
|
| 124 |
+
def __call__(
|
| 125 |
+
self,
|
| 126 |
+
prompt: Union[str, List[str]] = None,
|
| 127 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 128 |
+
mask: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 129 |
+
depth_map: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 130 |
+
num_inference_steps: int = 100,
|
| 131 |
+
guidance_scale: float = 3.5,
|
| 132 |
+
use_depth_map_as_input: bool = False,
|
| 133 |
+
apply_mask_to_input: bool = True,
|
| 134 |
+
mode: str = None,
|
| 135 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 136 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 137 |
+
eta: float = 0.0,
|
| 138 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 139 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 140 |
+
image_cond_embeds: Optional[torch.FloatTensor] = None,
|
| 141 |
+
negative_image_cond_embeds: Optional[torch.FloatTensor] = None,
|
| 142 |
+
output_type: Optional[str] = "pil",
|
| 143 |
+
return_dict: bool = True,
|
| 144 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 145 |
+
callback_steps: Optional[int] = 1,
|
| 146 |
+
):
|
| 147 |
+
# 0. Check inputs
|
| 148 |
+
self.check_inputs(prompt, callback_steps)
|
| 149 |
+
|
| 150 |
+
if image is None:
|
| 151 |
+
raise ValueError("`image` input cannot be undefined.")
|
| 152 |
+
|
| 153 |
+
# 1. Define call parameters
|
| 154 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 155 |
+
device = self._execution_device
|
| 156 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 157 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 158 |
+
# corresponds to doing no classifier free guidance.
|
| 159 |
+
do_classifier_free_guidance = True#guidance_scale >= 1.0 and image_guidance_scale >= 1.0
|
| 160 |
+
# check if scheduler is in sigmas space
|
| 161 |
+
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
|
| 162 |
+
|
| 163 |
+
# 2. Encode input prompt
|
| 164 |
+
cond_embeds = torch.cat([image_cond_embeds, negative_image_cond_embeds])
|
| 165 |
+
cond_embeds = einops.repeat(cond_embeds, 'b n d -> (b num) n d', num=num_images_per_prompt).to(torch.float16)
|
| 166 |
+
prompt_embeds = cond_embeds
|
| 167 |
+
|
| 168 |
+
# 3. Preprocess image
|
| 169 |
+
image = preprocess(image, mode)
|
| 170 |
+
|
| 171 |
+
if len(mask.shape) > 2:
|
| 172 |
+
edge_map = mask[:,:,1:]
|
| 173 |
+
edge_map = preprocess(edge_map, mode)
|
| 174 |
+
mask = mask[:,:,0]
|
| 175 |
+
else:
|
| 176 |
+
edge_map = None
|
| 177 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
| 178 |
+
if torch.sum(mask).item() == 0.0 and use_depth_map_as_input:
|
| 179 |
+
image = depth_map
|
| 180 |
+
if edge_map is None:
|
| 181 |
+
if apply_mask_to_input:
|
| 182 |
+
image = image * (1 - mask)
|
| 183 |
+
else:
|
| 184 |
+
image = image * (1 - mask) + edge_map * mask
|
| 185 |
+
height, width = image.shape[-2:]
|
| 186 |
+
|
| 187 |
+
# 4. set timesteps
|
| 188 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 189 |
+
timesteps = self.scheduler.timesteps
|
| 190 |
+
|
| 191 |
+
# 5. Prepare Image latents
|
| 192 |
+
image_latents = self.prepare_image_latents(
|
| 193 |
+
image,
|
| 194 |
+
mask,
|
| 195 |
+
batch_size,
|
| 196 |
+
num_images_per_prompt,
|
| 197 |
+
prompt_embeds.dtype,
|
| 198 |
+
device,
|
| 199 |
+
do_classifier_free_guidance,
|
| 200 |
+
generator,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
if mode == 't2i':
|
| 204 |
+
image_latents = torch.zeros_like(image_latents)
|
| 205 |
+
|
| 206 |
+
# 6. Prepare latent variables
|
| 207 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 208 |
+
latents = self.prepare_latents(
|
| 209 |
+
batch_size * num_images_per_prompt,
|
| 210 |
+
num_channels_latents,
|
| 211 |
+
height,
|
| 212 |
+
width,
|
| 213 |
+
prompt_embeds.dtype,
|
| 214 |
+
device,
|
| 215 |
+
generator,
|
| 216 |
+
latents,
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# 7. Check that shapes of latents and image match the UNet channels
|
| 220 |
+
num_channels_image = image_latents.shape[1]
|
| 221 |
+
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
|
| 222 |
+
raise ValueError(
|
| 223 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
| 224 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
| 225 |
+
f" `num_channels_image`: {num_channels_image} "
|
| 226 |
+
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
|
| 227 |
+
" `pipeline.unet` or your `image` input."
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 231 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 232 |
+
|
| 233 |
+
# 9. Denoising loop
|
| 234 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 235 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 236 |
+
for i, t in enumerate(timesteps):
|
| 237 |
+
# Expand the latents if we are doing classifier free guidance.
|
| 238 |
+
# The latents are expanded 3 times because for pix2pix the guidance\
|
| 239 |
+
# is applied for both the text and the input image.
|
| 240 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 241 |
+
|
| 242 |
+
# concat latents, image_latents in the channel dimension
|
| 243 |
+
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 244 |
+
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
|
| 245 |
+
|
| 246 |
+
# predict the noise residual
|
| 247 |
+
noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
| 248 |
+
|
| 249 |
+
# Hack:
|
| 250 |
+
# For karras style schedulers the model does classifer free guidance using the
|
| 251 |
+
# predicted_original_sample instead of the noise_pred. So we need to compute the
|
| 252 |
+
# predicted_original_sample here if we are using a karras style scheduler.
|
| 253 |
+
if scheduler_is_in_sigma_space:
|
| 254 |
+
step_index = (self.scheduler.timesteps == t).nonzero().item()
|
| 255 |
+
sigma = self.scheduler.sigmas[step_index]
|
| 256 |
+
noise_pred = latent_model_input - sigma * noise_pred
|
| 257 |
+
|
| 258 |
+
# perform guidance
|
| 259 |
+
if do_classifier_free_guidance:
|
| 260 |
+
noise_pred_full, noise_pred_uncond = noise_pred.chunk(2)
|
| 261 |
+
noise_pred = (
|
| 262 |
+
noise_pred_uncond
|
| 263 |
+
+ guidance_scale * (noise_pred_full - noise_pred_uncond)
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# Hack:
|
| 267 |
+
# For karras style schedulers the model does classifer free guidance using the
|
| 268 |
+
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
|
| 269 |
+
# expects the noise_pred and computes the predicted_original_sample internally. So we
|
| 270 |
+
# need to overwrite the noise_pred here such that the value of the computed
|
| 271 |
+
# predicted_original_sample is correct.
|
| 272 |
+
if scheduler_is_in_sigma_space:
|
| 273 |
+
noise_pred = (noise_pred - latents) / (-sigma)
|
| 274 |
+
|
| 275 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 276 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 277 |
+
|
| 278 |
+
# call the callback, if provided
|
| 279 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 280 |
+
progress_bar.update()
|
| 281 |
+
if callback is not None and i % callback_steps == 0:
|
| 282 |
+
callback(i, t, latents)
|
| 283 |
+
|
| 284 |
+
# 10. Post-processing
|
| 285 |
+
image = self.decode_latents(latents)
|
| 286 |
+
|
| 287 |
+
# 11. Run safety checker
|
| 288 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 289 |
+
|
| 290 |
+
# 12. Convert to PIL
|
| 291 |
+
if output_type == "pil":
|
| 292 |
+
image = self.numpy_to_pil(image)
|
| 293 |
+
|
| 294 |
+
if not return_dict:
|
| 295 |
+
return (image, has_nsfw_concept)
|
| 296 |
+
|
| 297 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class CustomRealESRGAN(RealESRGAN):
|
| 301 |
+
@torch.no_grad()
|
| 302 |
+
@torch.cuda.amp.autocast()
|
| 303 |
+
def predict(self, pil_lr_image_list):
|
| 304 |
+
device = self.device
|
| 305 |
+
# batchfy
|
| 306 |
+
batch_lr_images = (torch.stack([pil_to_tensor(pil_lr_image) for pil_lr_image in pil_lr_image_list]).float() / 255).to(device)
|
| 307 |
+
batch_outputs = self.model(batch_lr_images).clamp_(0, 1)
|
| 308 |
+
|
| 309 |
+
# to pil images
|
| 310 |
+
return [to_pil_image(output) for output in batch_outputs]
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def build_models(args):
|
| 314 |
+
# Load scheduler, tokenizer and models.
|
| 315 |
+
|
| 316 |
+
model_path = 'navervision/Graphit-SD'
|
| 317 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 318 |
+
model_path, torch_dtype=torch.float16,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
vae_name = 'stabilityai/sd-vae-ft-ema'
|
| 322 |
+
vae = AutoencoderKL.from_pretrained(vae_name, torch_dtype=torch.float16)
|
| 323 |
+
|
| 324 |
+
model_name = 'timbrooks/instruct-pix2pix'
|
| 325 |
+
pipe = GraphitPipeline.from_pretrained(model_name, torch_dtype=torch.float16, safety_checker=None,
|
| 326 |
+
unet = unet,
|
| 327 |
+
vae = vae,
|
| 328 |
+
)
|
| 329 |
+
pipe = pipe.to('cuda:0')
|
| 330 |
+
|
| 331 |
+
## load CompoDiff
|
| 332 |
+
compodiff_model, clip_model, clip_preprocess, clip_tokenizer = compodiff.build_model()
|
| 333 |
+
compodiff_model, clip_model = compodiff_model.to('cuda:0'), clip_model.to('cuda:0')
|
| 334 |
+
|
| 335 |
+
## load third-party models
|
| 336 |
+
model_name = 'Intel/dpt-large'
|
| 337 |
+
depth_preprocess = DPTFeatureExtractor.from_pretrained(model_name)
|
| 338 |
+
depth_predictor = DPTForDepthEstimation.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 339 |
+
depth_predictor = depth_predictor.to('cuda:0')
|
| 340 |
+
|
| 341 |
+
if not os.path.exists('./third_party/remover_fast.pth'):
|
| 342 |
+
model_file_url = hf_hub_url(repo_id='Geonmo/remover_fast', filename='remover_fast.pth')
|
| 343 |
+
cached_download(model_file_url, cache_dir='./third_party', force_filename='remover_fast.pth')
|
| 344 |
+
remover = Remover(fast=True, jit=False, device='cuda:0', ckpt='./third_party/remover_fast.pth')
|
| 345 |
+
|
| 346 |
+
sr_model = CustomRealESRGAN('cuda:0', scale=2)
|
| 347 |
+
sr_model.load_weights('./third_party/RealESRGAN_x2.pth', download=True)
|
| 348 |
+
|
| 349 |
+
dataset = datasets.load_dataset("FredZhang7/stable-diffusion-prompts-2.47M")
|
| 350 |
+
|
| 351 |
+
train = dataset["train"]
|
| 352 |
+
prompts = train["text"]
|
| 353 |
+
|
| 354 |
+
model_dict = {'pipe': pipe,
|
| 355 |
+
'compodiff': compodiff_model,
|
| 356 |
+
'clip_preprocess': clip_preprocess,
|
| 357 |
+
'clip_tokenizer': clip_tokenizer,
|
| 358 |
+
'clip_model': clip_model,
|
| 359 |
+
'depth_preprocess': depth_preprocess,
|
| 360 |
+
'depth_predictor': depth_predictor,
|
| 361 |
+
'remover': remover,
|
| 362 |
+
'sr_model': sr_model,
|
| 363 |
+
'prompt_candidates': prompts,
|
| 364 |
+
}
|
| 365 |
+
return model_dict
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def predict_compodiff(image, text_input, negative_text, cfg_image_scale, cfg_text_scale, mask, random_seed):
|
| 369 |
+
text_token_dict = model_dict['clip_tokenizer'](text=text_input, return_tensors='pt', padding='max_length', truncation=True)
|
| 370 |
+
text_tokens, text_attention_mask = text_token_dict['input_ids'].to('cuda:0'), text_token_dict['attention_mask'].to('cuda:0')
|
| 371 |
+
|
| 372 |
+
negative_text_token_dict = model_dict['clip_tokenizer'](text=negative_text, return_tensors='pt', padding='max_length', truncation=True)
|
| 373 |
+
negative_text_tokens, negative_text_attention_mask = negative_text_token_dict['input_ids'].to('cuda:0'), text_token_dict['attention_mask'].to('cuda:0')
|
| 374 |
+
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
if image is None:
|
| 377 |
+
image_cond = torch.zeros([1,1,768]).to('cuda:0')
|
| 378 |
+
mask = torch.tensor(np.zeros([64, 64], dtype='float32')).to('cuda:0').unsqueeze(0)
|
| 379 |
+
else:
|
| 380 |
+
image_source = image.resize((512, 512))
|
| 381 |
+
image_source = model_dict['clip_preprocess'](image_source, return_tensors='pt')['pixel_values'].to('cuda:0')
|
| 382 |
+
mask = mask.resize((512, 512))
|
| 383 |
+
mask = model_dict['clip_preprocess'](mask, do_normalize=False, return_tensors='pt')['pixel_values']
|
| 384 |
+
mask = mask[:,:1,:,:]
|
| 385 |
+
mask = (mask > 0.5).float().to('cuda:0')
|
| 386 |
+
image_source = image_source * (1 - mask)
|
| 387 |
+
image_cond = model_dict['clip_model'].encode_images(image_source)
|
| 388 |
+
mask = transforms.Resize([64, 64])(mask)[:,0,:,:]
|
| 389 |
+
mask = (mask > 0.5).float()
|
| 390 |
+
|
| 391 |
+
text_cond = model_dict['clip_model'].encode_texts(text_tokens, text_attention_mask)
|
| 392 |
+
negative_text_cond = model_dict['clip_model'].encode_texts(negative_text_tokens, negative_text_attention_mask)
|
| 393 |
+
|
| 394 |
+
sampled_image_features = model_dict['compodiff'].sample(image_cond, text_cond, negative_text_cond, mask, timesteps=25, cond_scale=(1.0 if image is None else 1.3, cfg_text_scale), num_samples_per_batch=4, random_seed=random_seed).unsqueeze(1)
|
| 395 |
+
return sampled_image_features, image_cond
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def generate_depth_map(image, height, width):
|
| 399 |
+
depth_inputs = {k: v.to('cuda:0', dtype=torch.float16) for k, v in model_dict['depth_preprocess'](images=image, return_tensors='pt').items()}
|
| 400 |
+
depth_map = model_dict['depth_predictor'](**depth_inputs).predicted_depth.unsqueeze(1)
|
| 401 |
+
depth_min = torch.amin(depth_map, dim=[1,2,3], keepdim=True)
|
| 402 |
+
depth_max = torch.amax(depth_map, dim=[1,2,3], keepdim=True)
|
| 403 |
+
depth_map = 2.0 * ((depth_map - depth_min) / (depth_max - depth_min)) - 1.0
|
| 404 |
+
depth_map = torch.nn.functional.interpolate(
|
| 405 |
+
depth_map,
|
| 406 |
+
size=(height, width),
|
| 407 |
+
mode='bicubic',
|
| 408 |
+
align_corners=False,
|
| 409 |
+
)
|
| 410 |
+
return depth_map
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def generate_color(image, compactness=30, n_segments=100, thresh=35, blur_kernel=3, blur_std=0):
|
| 414 |
+
img = image # 0 ~ 255 uint8
|
| 415 |
+
labels = segmentation.slic(img, compactness=compactness, n_segments=n_segments)#, start_label=1)
|
| 416 |
+
g = graph.rag_mean_color(img, labels)
|
| 417 |
+
labels2 = graph.cut_threshold(labels, g, thresh=thresh)
|
| 418 |
+
out = color.label2rgb(labels2, img, kind='avg', bg_label=-1)
|
| 419 |
+
return out
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
@torch.no_grad()
|
| 423 |
+
def generate(image_source, image_reference, text_input, negative_prompt, steps, random_seed, cfg_image_scale, cfg_text_scale, cfg_image_space_scale, cfg_image_reference_mix_weight, cfg_image_source_mix_weight, mask_scale, use_edge, t2i_height, t2i_width, do_sr, mode):
|
| 424 |
+
text_input = text_input.lower()
|
| 425 |
+
if negative_prompt == '':
|
| 426 |
+
print('running without a negative prompt')
|
| 427 |
+
# prepare an input image
|
| 428 |
+
use_mask = False
|
| 429 |
+
mask = None
|
| 430 |
+
is_null_image_source = False
|
| 431 |
+
if type(image_source) == dict:
|
| 432 |
+
image_source, mask = image_source['image'], image_source['mask']
|
| 433 |
+
elif image_source is None:
|
| 434 |
+
image_source = Image.fromarray(np.zeros([t2i_height, t2i_width, 3]).astype('uint8'))
|
| 435 |
+
is_null_image_source = True
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
image_source = ImageOps.exif_transpose(image_source)
|
| 439 |
+
except:
|
| 440 |
+
pass
|
| 441 |
+
|
| 442 |
+
width, height = image_source.size
|
| 443 |
+
factor = 512 / max(width, height)
|
| 444 |
+
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
| 445 |
+
width = int((width * factor) // 64) * 64
|
| 446 |
+
height = int((height * factor) // 64) * 64
|
| 447 |
+
|
| 448 |
+
image_source = org_image_source = ImageOps.fit(image_source, (width, height), method=Image.Resampling.LANCZOS)
|
| 449 |
+
|
| 450 |
+
if mask is not None:
|
| 451 |
+
mask_pil = mask = ImageOps.fit(mask, (width, height), method=Image.Resampling.LANCZOS)
|
| 452 |
+
mask = ((torch.tensor(np.array(mask.convert('L'))).float() / 255.0) > 0.5).float()
|
| 453 |
+
if torch.sum(mask).item() > 0.0:
|
| 454 |
+
print('now using mask')
|
| 455 |
+
use_mask = True
|
| 456 |
+
else:
|
| 457 |
+
mask = torch.zeros([height, width])
|
| 458 |
+
mask_pil = to_pil_image(mask)
|
| 459 |
+
|
| 460 |
+
use_depth_map_as_input = False
|
| 461 |
+
if mode == 's2i' or mode == 'scr2i': # sketch to image
|
| 462 |
+
image_source = mask
|
| 463 |
+
image_source = einops.repeat(image_source, 'h w -> r h w', r=3)
|
| 464 |
+
mask = image_source[0,:,:]
|
| 465 |
+
image_source = org_image_source = to_pil_image(image_source)
|
| 466 |
+
mask_pil = to_pil_image(mask)
|
| 467 |
+
mask *= mask_scale
|
| 468 |
+
use_mask = False
|
| 469 |
+
elif mode == 'cs2i':
|
| 470 |
+
mask = torch.tensor((np.array(image_source)[:,:,0] != 255)).float() * mask_scale
|
| 471 |
+
mask_pil = Image.fromarray(((np.array(image_source)[:,:,0] != 255) * 255).astype('uint8'))
|
| 472 |
+
use_mask = False #True
|
| 473 |
+
elif mode == 'd2i': # depth to image
|
| 474 |
+
use_depth_map_as_input = True
|
| 475 |
+
elif mode == 'e2i': # edge to image
|
| 476 |
+
image_source = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3)
|
| 477 |
+
image_source = Image.fromarray(image_source) #to_pil_image(image_source)
|
| 478 |
+
org_image_source = image_source
|
| 479 |
+
elif mode == 'inped':
|
| 480 |
+
# mask = torch.Size([512, 512])
|
| 481 |
+
mask_np = (einops.repeat(mask.numpy(), 'h w -> h w r', r=1) * 255).astype('uint8')
|
| 482 |
+
gray = mask_np #cv2.cvtColor(mask_np, cv2.COLOR_BGR2GRAY)
|
| 483 |
+
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
| 484 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 485 |
+
x, y, w, h = cv2.boundingRect(contours[0])
|
| 486 |
+
cv2.rectangle(mask_np, (x, y), (x+w, y+h), 255, -1)
|
| 487 |
+
mask_np = mask_np.astype('float32') / 255
|
| 488 |
+
if image_reference is not None:
|
| 489 |
+
edge_reference = image_reference.resize((w, h))
|
| 490 |
+
color_map = generate_color(np.array(edge_reference)).astype('float32')
|
| 491 |
+
reference_map = (model_dict['remover'].process(edge_reference, type='map') > 16).astype('float32')
|
| 492 |
+
edge_reference = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(edge_reference)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
|
| 493 |
+
edge_np = np.zeros_like(np.array(image_source)).astype('float32')
|
| 494 |
+
if text_input != '':
|
| 495 |
+
edge_np[y:y+h,x:x+w] = edge_reference * reference_map
|
| 496 |
+
elif use_edge and mask_scale > 0.0:
|
| 497 |
+
print('mode: color inped with with_edge')
|
| 498 |
+
edge_np[y:y+h,x:x+w] = (255 - edge_reference) / 255 * color_map * reference_map + (1 - mask_scale) * edge_reference / 255 * reference_map
|
| 499 |
+
else:
|
| 500 |
+
print('mode: color inped with no_edge')
|
| 501 |
+
edge_np[y:y+h,x:x+w] = color_map * reference_map
|
| 502 |
+
mask_np = np.zeros_like(np.array(image_source)).astype('float32')
|
| 503 |
+
mask_np[y:y+h,x:x+w] = reference_map #edge_reference
|
| 504 |
+
mask_np = mask_np[:,:,:1]
|
| 505 |
+
else:
|
| 506 |
+
edge_np = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
|
| 507 |
+
# concat edge to mask_np
|
| 508 |
+
mask = torch.tensor(np.concatenate([mask_np, edge_np], axis=-1))
|
| 509 |
+
mask_pil = to_pil_image(mask_np[:,:,0].astype('uint8') * 255)
|
| 510 |
+
#mask_pil = to_pil_image((mask_np[:,:,0] * 255).astype('uint8'))
|
| 511 |
+
|
| 512 |
+
with torch.no_grad():
|
| 513 |
+
# do reference first
|
| 514 |
+
if image_reference is not None:
|
| 515 |
+
image_cond_reference = ImageOps.exif_transpose(image_reference)
|
| 516 |
+
image_cond_reference = model_dict['clip_preprocess'](image_cond_reference, return_tensors='pt')['pixel_values'].to('cuda:0')
|
| 517 |
+
image_cond_reference = model_dict['clip_model'].encode_images(image_cond_reference)
|
| 518 |
+
else:
|
| 519 |
+
image_cond_reference = torch.zeros([1, 1, 768]).to(torch.float16).to('cuda:0')
|
| 520 |
+
|
| 521 |
+
# do source or knn
|
| 522 |
+
image_cond_source = None
|
| 523 |
+
if text_input != '':
|
| 524 |
+
if mode in ['t2i', 'd2i', 'e2i', 's2i', 'scr2i', 'cs2i']:
|
| 525 |
+
if mode == 'cs2i':
|
| 526 |
+
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
|
| 527 |
+
image_cond_color_compensation, _ = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
|
| 528 |
+
image_cond = 0.9 * image_cond + 0.1 * image_cond_color_compensation
|
| 529 |
+
else:
|
| 530 |
+
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
|
| 531 |
+
else:
|
| 532 |
+
image_cond, image_cond_source = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
|
| 533 |
+
image_cond = image_cond.to(torch.float16).to('cuda:0')
|
| 534 |
+
image_cond_source = image_cond_source.to(torch.float16).to('cuda:0')
|
| 535 |
+
else:
|
| 536 |
+
image_cond = torch.zeros([1, 1, 768]).to(torch.float16).to('cuda:0')
|
| 537 |
+
|
| 538 |
+
if image_cond_source is None and mode != 't2i':
|
| 539 |
+
image_cond_source = image_source.resize((512, 512))
|
| 540 |
+
image_cond_source = model_dict['clip_preprocess'](image_cond_source, return_tensors='pt')['pixel_values'].to('cuda:0')
|
| 541 |
+
image_cond_source = model_dict['clip_model'].encode_images(image_cond_source)
|
| 542 |
+
|
| 543 |
+
if cfg_image_reference_mix_weight > 0.0 and torch.sum(image_cond_reference).item() != 0.0:
|
| 544 |
+
if torch.sum(image_cond).item() == 0.0:
|
| 545 |
+
image_cond = image_cond_reference
|
| 546 |
+
else:
|
| 547 |
+
image_cond = (1.0 - cfg_image_reference_mix_weight) * image_cond + cfg_image_reference_mix_weight * image_cond_reference
|
| 548 |
+
|
| 549 |
+
if cfg_image_source_mix_weight > 0.0:
|
| 550 |
+
image_cond = (1.0 - cfg_image_source_mix_weight) * image_cond + cfg_image_source_mix_weight * image_cond_source
|
| 551 |
+
|
| 552 |
+
if negative_prompt != '':
|
| 553 |
+
negative_image_cond, _ = predict_compodiff(None, negative_prompt, '', cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
|
| 554 |
+
negative_image_cond = negative_image_cond.to(torch.float16).to('cuda:0')
|
| 555 |
+
else:
|
| 556 |
+
negative_image_cond = torch.zeros_like(image_cond)
|
| 557 |
+
|
| 558 |
+
# negative_prompt_embeds
|
| 559 |
+
image_source = torch.tensor(np.array(image_source))
|
| 560 |
+
depth_map = einops.repeat(generate_depth_map(image_source, height, width), 'n c h w -> n (c r) h w', r=3).float().cpu()
|
| 561 |
+
|
| 562 |
+
images = model_dict['pipe'](text_input,
|
| 563 |
+
image=image_source,
|
| 564 |
+
mask=mask,
|
| 565 |
+
depth_map=depth_map,
|
| 566 |
+
num_inference_steps=int(steps),
|
| 567 |
+
image_cond_embeds=image_cond,
|
| 568 |
+
negative_image_cond_embeds=negative_image_cond,
|
| 569 |
+
guidance_scale=cfg_image_space_scale,
|
| 570 |
+
use_depth_map_as_input=use_depth_map_as_input,
|
| 571 |
+
apply_mask_to_input=use_mask,
|
| 572 |
+
mode=mode,
|
| 573 |
+
generator=torch.manual_seed(random_seed),
|
| 574 |
+
num_images_per_prompt=2).images
|
| 575 |
+
if do_sr:
|
| 576 |
+
images = model_dict['sr_model'].predict(images)
|
| 577 |
+
|
| 578 |
+
return images, [org_image_source, mask_pil, to_pil_image(0.5 * (depth_map[0] + 1.0))]
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
def generate_canvas(image):
|
| 582 |
+
return Image.fromarray((np.ones([512, 512, 3]) * 255).astype('uint8'))
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def surprise_me():
|
| 586 |
+
return random.sample(model_dict['prompt_candidates'], k=1)[0]
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
if __name__ == "__main__":
|
| 590 |
+
parser = argparse.ArgumentParser('Demo')
|
| 591 |
+
parser.add_argument('--model_folder', default=None, type=str, help='path to model_folder')
|
| 592 |
+
|
| 593 |
+
args = parser.parse_args()
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
global model_dict
|
| 597 |
+
|
| 598 |
+
model_dict = build_models(args)
|
| 599 |
+
|
| 600 |
+
### define gradio demo
|
| 601 |
+
title = 'Graphit demo'
|
| 602 |
+
|
| 603 |
+
md_title = f'''# {title}
|
| 604 |
+
Diffusion on GPU.
|
| 605 |
+
'''
|
| 606 |
+
neg_default = 'watermark, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 607 |
+
with gr.Blocks(title=title) as demo:
|
| 608 |
+
gr.Markdown(md_title)
|
| 609 |
+
mode_t2i = gr.Textbox(value='t2i', label='mode selection', visible=False)
|
| 610 |
+
mode_i2i = gr.Textbox(value='i2i', label='mode selection', visible=False)
|
| 611 |
+
mode_inpaint = gr.Textbox(value='inpaint', label='mode selection', visible=False)
|
| 612 |
+
mode_s2i = gr.Textbox(value='s2i', label='mode selection', visible=False)
|
| 613 |
+
mode_scr2i = gr.Textbox(value='scr2i', label='mode selection', visible=False)
|
| 614 |
+
mode_d2i = gr.Textbox(value='d2i', label='mode selection', visible=False)
|
| 615 |
+
mode_e2i = gr.Textbox(value='e2i', label='mode selection', visible=False)
|
| 616 |
+
mode_inped = gr.Textbox(value='inped', label='mode selection', visible=False)
|
| 617 |
+
mode_cs2i = gr.Textbox(value='cs2i', label='mode selection', visible=False)
|
| 618 |
+
mask_scale_default = gr.Number(value=1.0, label='mask scale', visible=False)
|
| 619 |
+
use_edge_default = gr.Checkbox(value=True, label='use color map with edge map', visible=False)
|
| 620 |
+
height_default = gr.Number(value=512, precision=0, label='height', visible=False)
|
| 621 |
+
width_default = gr.Number(value=512, precision=0, label='width', visible=False)
|
| 622 |
+
with gr.Row():
|
| 623 |
+
with gr.Column():
|
| 624 |
+
with gr.Tabs():
|
| 625 |
+
'''
|
| 626 |
+
image to image
|
| 627 |
+
inpainting
|
| 628 |
+
depth to image
|
| 629 |
+
saliency map to image
|
| 630 |
+
'''
|
| 631 |
+
with gr.TabItem("Text to Image"):
|
| 632 |
+
image_source_t2i = gr.Image(type='pil', label='Source image', visible=False)
|
| 633 |
+
with gr.Row():
|
| 634 |
+
steps_input_t2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 635 |
+
random_seed_t2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 636 |
+
with gr.Accordion('Advanced options', open=False):
|
| 637 |
+
with gr.Row():
|
| 638 |
+
cfg_image_scale_t2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 639 |
+
cfg_image_space_scale_t2i = gr.Number(value=7.5, label='attn image space scale')
|
| 640 |
+
cfg_text_scale_t2i = gr.Number(value=7.5, label='attn text scale')
|
| 641 |
+
negative_text_input_t2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 642 |
+
with gr.Row():
|
| 643 |
+
cfg_image_source_mix_weight_t2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 644 |
+
cfg_image_reference_mix_weight_t2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 645 |
+
with gr.Row():
|
| 646 |
+
height_t2i = gr.Number(value=512, precision=0, label='height (~512)')
|
| 647 |
+
width_t2i = gr.Number(value=512, precision=0, label='width (~512)')
|
| 648 |
+
submit_button_t2i = gr.Button('Generate images')
|
| 649 |
+
with gr.TabItem("Image to Image"):
|
| 650 |
+
image_source_i2i = gr.Image(type='pil', label='Source image')
|
| 651 |
+
with gr.Row():
|
| 652 |
+
steps_input_i2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 653 |
+
random_seed_i2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 654 |
+
with gr.Accordion('Advanced options', open=False):
|
| 655 |
+
with gr.Row():
|
| 656 |
+
cfg_image_scale_i2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 657 |
+
cfg_image_space_scale_i2i = gr.Number(value=7.5, label='attn image space scale')
|
| 658 |
+
cfg_text_scale_i2i = gr.Number(value=7.5, label='attn text scale')
|
| 659 |
+
negative_text_input_i2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 660 |
+
with gr.Row():
|
| 661 |
+
cfg_image_source_mix_weight_i2i = gr.Number(value=0.05, label='weight for mixing source image (0.0~1.0)')
|
| 662 |
+
cfg_image_reference_mix_weight_i2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 663 |
+
submit_button_i2i = gr.Button('Generate images')
|
| 664 |
+
with gr.TabItem("Depth to Image"):
|
| 665 |
+
image_source_d2i = gr.Image(type='pil', label='Source image')
|
| 666 |
+
with gr.Row():
|
| 667 |
+
steps_input_d2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 668 |
+
random_seed_d2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 669 |
+
with gr.Accordion('Advanced options', open=False):
|
| 670 |
+
with gr.Row():
|
| 671 |
+
cfg_image_scale_d2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 672 |
+
cfg_image_space_scale_d2i = gr.Number(value=7.5, label='attn image space scale')
|
| 673 |
+
cfg_text_scale_d2i = gr.Number(value=7.5, label='attn text scale')
|
| 674 |
+
negative_text_input_d2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 675 |
+
with gr.Row():
|
| 676 |
+
cfg_image_source_mix_weight_d2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 677 |
+
cfg_image_reference_mix_weight_d2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
|
| 678 |
+
submit_button_d2i = gr.Button('Generate images')
|
| 679 |
+
with gr.TabItem("Edge to Image"):
|
| 680 |
+
image_source_e2i = gr.Image(type='pil', label='Source image')
|
| 681 |
+
with gr.Row():
|
| 682 |
+
steps_input_e2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 683 |
+
random_seed_e2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 684 |
+
with gr.Accordion('Advanced options', open=False):
|
| 685 |
+
with gr.Row():
|
| 686 |
+
cfg_image_scale_e2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 687 |
+
cfg_image_space_scale_e2i = gr.Number(value=7.5, label='attn image space scale')
|
| 688 |
+
cfg_text_scale_e2i = gr.Number(value=7.5, label='attn text scale')
|
| 689 |
+
negative_text_input_e2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 690 |
+
with gr.Row():
|
| 691 |
+
cfg_image_source_mix_weight_e2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 692 |
+
cfg_image_reference_mix_weight_e2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
|
| 693 |
+
submit_button_e2i = gr.Button('Generate images')
|
| 694 |
+
with gr.TabItem("Inpaint"):
|
| 695 |
+
image_source_inp = gr.Image(type='pil', label='Source image', tool='sketch')
|
| 696 |
+
with gr.Row():
|
| 697 |
+
steps_input_inp = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 698 |
+
random_seed_inp = gr.Number(value=12345, precision=0, label='Seed')
|
| 699 |
+
with gr.Accordion('Advanced options', open=False):
|
| 700 |
+
with gr.Row():
|
| 701 |
+
cfg_image_scale_inp = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 702 |
+
cfg_image_space_scale_inp = gr.Number(value=7.5, label='attn image space scale')
|
| 703 |
+
cfg_text_scale_inp = gr.Number(value=7.5, label='attn text scale')
|
| 704 |
+
negative_text_input_inp = gr.Textbox(value='', label='Negative text')
|
| 705 |
+
with gr.Row():
|
| 706 |
+
cfg_image_source_mix_weight_inp = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 707 |
+
cfg_image_reference_mix_weight_inp = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 708 |
+
submit_button_inp = gr.Button('Generate images')
|
| 709 |
+
with gr.TabItem("Blending"):
|
| 710 |
+
image_source_inped = gr.Image(type='pil', label='Source image', tool='sketch')
|
| 711 |
+
with gr.Row():
|
| 712 |
+
steps_input_inped = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 713 |
+
random_seed_inped = gr.Number(value=12345, precision=0, label='Seed')
|
| 714 |
+
with gr.Accordion('Advanced options', open=False):
|
| 715 |
+
with gr.Row():
|
| 716 |
+
cfg_image_scale_inped = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 717 |
+
cfg_image_space_scale_inped = gr.Number(value=7.5, label='attn image space scale')
|
| 718 |
+
cfg_text_scale_inped = gr.Number(value=7.5, label='attn text scale')
|
| 719 |
+
negative_text_input_inped = gr.Textbox(value=neg_default, label='Negative text')
|
| 720 |
+
with gr.Row():
|
| 721 |
+
cfg_image_source_mix_weight_inped = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 722 |
+
cfg_image_reference_mix_weight_inped = gr.Number(value=0.35, label='weight for mixing reference image (0.0~1.0)')
|
| 723 |
+
with gr.Row():
|
| 724 |
+
mask_scale_inped = gr.Number(value=1.0, label='edge scale')
|
| 725 |
+
use_edge_inped = gr.Checkbox(value=False, label='use a color map with an edge map')
|
| 726 |
+
submit_button_inped = gr.Button('Generate images')
|
| 727 |
+
with gr.TabItem("Sketch (Rough) to Image"):
|
| 728 |
+
with gr.Column():
|
| 729 |
+
image_source_s2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=100).style(height=256, width=256)
|
| 730 |
+
build_canvas_s2i = gr.Button('Build canvas')
|
| 731 |
+
with gr.Row():
|
| 732 |
+
steps_input_s2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 733 |
+
random_seed_s2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 734 |
+
with gr.Accordion('Advanced options', open=False):
|
| 735 |
+
with gr.Row():
|
| 736 |
+
cfg_image_scale_s2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 737 |
+
cfg_image_space_scale_s2i = gr.Number(value=7.5, label='attn image space scale')
|
| 738 |
+
cfg_text_scale_s2i = gr.Number(value=7.5, label='attn text scale')
|
| 739 |
+
negative_text_input_s2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 740 |
+
with gr.Row():
|
| 741 |
+
cfg_image_source_mix_weight_s2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 742 |
+
cfg_image_reference_mix_weight_s2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 743 |
+
mask_scale_s2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
|
| 744 |
+
submit_button_s2i = gr.Button('Generate images')
|
| 745 |
+
with gr.TabItem("Sketch (Detail) to Image"):
|
| 746 |
+
with gr.Column():
|
| 747 |
+
image_source_scr2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=10).style(height=256, width=256)
|
| 748 |
+
build_canvas_scr2i = gr.Button('Build canvas')
|
| 749 |
+
with gr.Row():
|
| 750 |
+
steps_input_scr2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 751 |
+
random_seed_scr2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 752 |
+
with gr.Accordion('Advanced options', open=False):
|
| 753 |
+
with gr.Row():
|
| 754 |
+
cfg_image_scale_scr2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 755 |
+
cfg_image_space_scale_scr2i = gr.Number(value=7.5, label='attn image space scale')
|
| 756 |
+
cfg_text_scale_scr2i = gr.Number(value=7.5, label='attn text scale')
|
| 757 |
+
negative_text_input_scr2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 758 |
+
with gr.Row():
|
| 759 |
+
cfg_image_source_mix_weight_scr2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 760 |
+
cfg_image_reference_mix_weight_scr2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 761 |
+
mask_scale_scr2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
|
| 762 |
+
submit_button_scr2i = gr.Button('Generate images')
|
| 763 |
+
with gr.TabItem("Color Sketch to Image"):
|
| 764 |
+
with gr.Column():
|
| 765 |
+
image_source_cs2i = gr.Image(type='pil', source='canvas', label='Source image', tool='color-sketch').style(height=256, width=256)
|
| 766 |
+
#build_canvas_cs2i = gr.Button('Build canvas')
|
| 767 |
+
with gr.Row():
|
| 768 |
+
steps_input_cs2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
|
| 769 |
+
random_seed_cs2i = gr.Number(value=12345, precision=0, label='Seed')
|
| 770 |
+
with gr.Accordion('Advanced options', open=False):
|
| 771 |
+
with gr.Row():
|
| 772 |
+
cfg_image_scale_cs2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
|
| 773 |
+
cfg_image_space_scale_cs2i = gr.Number(value=7.5, label='attn image space scale')
|
| 774 |
+
cfg_text_scale_cs2i = gr.Number(value=7.5, label='attn text scale')
|
| 775 |
+
negative_text_input_cs2i = gr.Textbox(value=neg_default, label='Negative text')
|
| 776 |
+
with gr.Row():
|
| 777 |
+
cfg_image_source_mix_weight_cs2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
|
| 778 |
+
cfg_image_reference_mix_weight_cs2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
|
| 779 |
+
mask_scale_cs2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
|
| 780 |
+
submit_button_cs2i = gr.Button('Generate images')
|
| 781 |
+
text_input = gr.Textbox(value='', label='Input text')
|
| 782 |
+
submit_surprise_me = gr.Button('Surprise me')
|
| 783 |
+
#swap_button = gr.Button('Swap source with reference', visible=False)
|
| 784 |
+
with gr.Column():
|
| 785 |
+
with gr.Row():
|
| 786 |
+
do_sr = gr.Checkbox(value=False, label='Super-resolution')
|
| 787 |
+
image_reference = gr.Image(type='pil', label='Reference image')
|
| 788 |
+
gallery_outputs = gr.Gallery(label='Generated outputs').style(grid=[2], height='auto')
|
| 789 |
+
gallery_inputs = gr.Gallery(label='Processed inputs').style(grid=[2], height='auto')
|
| 790 |
+
|
| 791 |
+
submit_button_t2i.click(generate, inputs=[image_source_t2i, image_reference, text_input, negative_text_input_t2i, steps_input_t2i, random_seed_t2i, cfg_image_scale_t2i, cfg_text_scale_t2i, cfg_image_space_scale_t2i, cfg_image_reference_mix_weight_t2i, cfg_image_source_mix_weight_t2i, mask_scale_default, use_edge_default, height_t2i, width_t2i, do_sr, mode_t2i], outputs=[gallery_outputs, gallery_inputs])
|
| 792 |
+
submit_button_i2i.click(generate, inputs=[image_source_i2i, image_reference, text_input, negative_text_input_i2i, steps_input_i2i, random_seed_i2i, cfg_image_scale_i2i, cfg_text_scale_i2i, cfg_image_space_scale_i2i, cfg_image_reference_mix_weight_i2i, cfg_image_source_mix_weight_i2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_i2i], outputs=[gallery_outputs, gallery_inputs])
|
| 793 |
+
submit_button_d2i.click(generate, inputs=[image_source_d2i, image_reference, text_input, negative_text_input_d2i, steps_input_d2i, random_seed_d2i, cfg_image_scale_d2i, cfg_text_scale_d2i, cfg_image_space_scale_d2i, cfg_image_reference_mix_weight_d2i, cfg_image_source_mix_weight_d2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_d2i], outputs=[gallery_outputs, gallery_inputs])
|
| 794 |
+
submit_button_e2i.click(generate, inputs=[image_source_e2i, image_reference, text_input, negative_text_input_e2i, steps_input_e2i, random_seed_e2i, cfg_image_scale_e2i, cfg_text_scale_e2i, cfg_image_space_scale_e2i, cfg_image_reference_mix_weight_e2i, cfg_image_source_mix_weight_e2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_e2i], outputs=[gallery_outputs, gallery_inputs])
|
| 795 |
+
submit_button_inp.click(generate, inputs=[image_source_inp, image_reference, text_input, negative_text_input_inp, steps_input_inp, random_seed_inp, cfg_image_scale_inp, cfg_text_scale_inp, cfg_image_space_scale_inp, cfg_image_reference_mix_weight_inp, cfg_image_source_mix_weight_inp, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_inpaint], outputs=[gallery_outputs, gallery_inputs])
|
| 796 |
+
submit_button_inped.click(generate, inputs=[image_source_inped, image_reference, text_input, negative_text_input_inped, steps_input_inped, random_seed_inped, cfg_image_scale_inped, cfg_text_scale_inped, cfg_image_space_scale_inped, cfg_image_reference_mix_weight_inped, cfg_image_source_mix_weight_inped, mask_scale_inped, use_edge_inped, height_default, width_default, do_sr, mode_inped], outputs=[gallery_outputs, gallery_inputs])
|
| 797 |
+
submit_button_s2i.click(generate, inputs=[image_source_s2i, image_reference, text_input, negative_text_input_s2i, steps_input_s2i, random_seed_s2i, cfg_image_scale_s2i, cfg_text_scale_s2i, cfg_image_space_scale_s2i, cfg_image_reference_mix_weight_s2i, cfg_image_source_mix_weight_s2i, mask_scale_s2i, use_edge_default, height_default, width_default, do_sr, mode_s2i], outputs=[gallery_outputs, gallery_inputs])
|
| 798 |
+
submit_button_scr2i.click(generate, inputs=[image_source_scr2i, image_reference, text_input, negative_text_input_scr2i, steps_input_scr2i, random_seed_scr2i, cfg_image_scale_scr2i, cfg_text_scale_scr2i, cfg_image_space_scale_scr2i, cfg_image_reference_mix_weight_scr2i, cfg_image_source_mix_weight_scr2i, mask_scale_scr2i, use_edge_default, height_default, width_default, do_sr, mode_scr2i], outputs=[gallery_outputs, gallery_inputs])
|
| 799 |
+
submit_button_cs2i.click(generate, inputs=[image_source_cs2i, image_reference, text_input, negative_text_input_cs2i, steps_input_cs2i, random_seed_cs2i, cfg_image_scale_cs2i, cfg_text_scale_cs2i, cfg_image_space_scale_cs2i, cfg_image_reference_mix_weight_cs2i, cfg_image_source_mix_weight_cs2i, mask_scale_cs2i, use_edge_default, height_default, width_default, do_sr, mode_cs2i], outputs=[gallery_outputs, gallery_inputs])
|
| 800 |
+
build_canvas_s2i.click(generate_canvas, inputs=[image_source_s2i], outputs=[image_source_s2i])
|
| 801 |
+
build_canvas_scr2i.click(generate_canvas, inputs=[image_source_scr2i], outputs=[image_source_scr2i])
|
| 802 |
+
submit_surprise_me.click(surprise_me, outputs=[text_input])
|
| 803 |
+
demo.queue()
|
| 804 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.13.0
|
| 2 |
+
torchvision>=0.9
|
| 3 |
+
transformers
|
| 4 |
+
diffusers
|
| 5 |
+
huggingface_hub
|
| 6 |
+
git+https://github.com/navervision/CompoDiff.git
|
| 7 |
+
transparent-background
|
| 8 |
+
git+https://github.com/sberbank-ai/Real-ESRGAN.git
|
| 9 |
+
gradio
|