Spaces:
Runtime error
Runtime error
temp-9384289
commited on
Commit
·
d0864a2
0
Parent(s):
test
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +400 -0
- flagged/log.csv +2 -0
- flagged/output/a7d3e3ed399e14f7629e/image.webp +0 -0
- requirements.txt +16 -0
- tester/generation/1714450388.794121/generated_image.png +0 -0
- tester/generation/1714450388.794121/keeper.png +0 -0
- tester/generation/1714450388.794121/real_deal.png +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: ModelProblems
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.28.3
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
|
| 2 |
+
from diffusers import StableDiffusionPipeline
|
| 3 |
+
from diffusers import DiffusionPipeline
|
| 4 |
+
import torch
|
| 5 |
+
import time
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import requests
|
| 11 |
+
from image_similarity_measures.evaluate import evaluation
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from huggingface_hub import from_pretrained_keras
|
| 14 |
+
from math import sqrt, ceil
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
modelieo=[
|
| 18 |
+
'nathanReitinger/MNIST-diffusion',
|
| 19 |
+
'nathanReitinger/MNIST-diffusion-oneImage',
|
| 20 |
+
'nathanReitinger/MNIST-GAN',
|
| 21 |
+
'nathanReitinger/MNIST-GAN-noDropout'
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
|
| 25 |
+
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
|
| 26 |
+
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
|
| 27 |
+
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
|
| 28 |
+
|
| 29 |
+
print("how long to hunt", hunting_time_limit)
|
| 30 |
+
if hunting_time_limit == None:
|
| 31 |
+
hunting_time_limit = 2
|
| 32 |
+
|
| 33 |
+
lowest_score = 10000
|
| 34 |
+
lowest_image = None
|
| 35 |
+
lowest_image_path = ''
|
| 36 |
+
|
| 37 |
+
start = time.time()
|
| 38 |
+
|
| 39 |
+
for i in range(len(train_labels)):
|
| 40 |
+
# print(i)
|
| 41 |
+
if train_labels[i] == gen_label:
|
| 42 |
+
|
| 43 |
+
###
|
| 44 |
+
# get a real image (of correct number)
|
| 45 |
+
###
|
| 46 |
+
|
| 47 |
+
# print(i)
|
| 48 |
+
to_check = train_images[i]
|
| 49 |
+
fig = plt.figure(figsize=(1, 1))
|
| 50 |
+
plt.subplot(1, 1, 0+1)
|
| 51 |
+
plt.imshow(to_check, cmap='gray')
|
| 52 |
+
plt.axis('off')
|
| 53 |
+
plt.savefig(file_path + 'real_deal.png')
|
| 54 |
+
plt.close()
|
| 55 |
+
|
| 56 |
+
# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
|
| 57 |
+
# print("---")
|
| 58 |
+
|
| 59 |
+
###
|
| 60 |
+
# check how close that real training data is to generated number
|
| 61 |
+
###
|
| 62 |
+
results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
|
| 63 |
+
if results['rmse'] < lowest_score:
|
| 64 |
+
lowest_score = results['rmse']
|
| 65 |
+
lowest_image = to_check
|
| 66 |
+
|
| 67 |
+
to_save = train_images[i]
|
| 68 |
+
fig = plt.figure(figsize=(1, 1))
|
| 69 |
+
plt.subplot(1, 1, 0+1)
|
| 70 |
+
plt.imshow(to_save, cmap='gray')
|
| 71 |
+
plt.axis('off')
|
| 72 |
+
plt.savefig(file_path + 'keeper.png')
|
| 73 |
+
plt.close()
|
| 74 |
+
lowest_image_path = file_path + 'keeper.png'
|
| 75 |
+
|
| 76 |
+
print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
|
| 77 |
+
now = time.time()
|
| 78 |
+
if now-start > hunting_time_limit:
|
| 79 |
+
print(str(now-start) + "s")
|
| 80 |
+
return lowest_image_path
|
| 81 |
+
|
| 82 |
+
return lowest_image_path
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def digit_recognition(filename):
|
| 86 |
+
|
| 87 |
+
API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
|
| 88 |
+
special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-'
|
| 89 |
+
is_escaped = special_string.replace("-", '')
|
| 90 |
+
bear = "Bearer " + is_escaped
|
| 91 |
+
headers = {"Authorization": bear}
|
| 92 |
+
# get a prediction on what number this is
|
| 93 |
+
def query(filename):
|
| 94 |
+
with open(filename, "rb") as f:
|
| 95 |
+
data = f.read()
|
| 96 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
| 97 |
+
return response.json()
|
| 98 |
+
|
| 99 |
+
# use latest model to generate a new image, return path
|
| 100 |
+
ret = False
|
| 101 |
+
output = None
|
| 102 |
+
while ret == False:
|
| 103 |
+
output = query(filename + 'generated_image.png')
|
| 104 |
+
if 'error' in output:
|
| 105 |
+
time.sleep(10)
|
| 106 |
+
ret = False
|
| 107 |
+
else:
|
| 108 |
+
ret = True
|
| 109 |
+
print(output)
|
| 110 |
+
|
| 111 |
+
low_score_log = ''
|
| 112 |
+
this_label_for_this_image = int(output[0]['label'])
|
| 113 |
+
return {'full': output, 'number': this_label_for_this_image}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def get_other(original_image, hunting_time_limit):
|
| 117 |
+
RANDO = str(time.time())
|
| 118 |
+
file_path = 'tester/' + 'generation' + "/" + RANDO + '/'
|
| 119 |
+
os.makedirs(file_path)
|
| 120 |
+
fig = plt.figure(figsize=(1, 1))
|
| 121 |
+
plt.subplot(1, 1, 0+1)
|
| 122 |
+
plt.imshow(original_image, cmap='gray')
|
| 123 |
+
plt.axis('off')
|
| 124 |
+
plt.savefig(file_path + 'generated_image.png')
|
| 125 |
+
plt.close()
|
| 126 |
+
print('[+] done saving generation')
|
| 127 |
+
print("[-] what digit is this")
|
| 128 |
+
ret = digit_recognition(file_path)
|
| 129 |
+
print(ret['full'])
|
| 130 |
+
print(ret['number'])
|
| 131 |
+
print("[+]", ret['number'])
|
| 132 |
+
print("[-] show some most similar numbers")
|
| 133 |
+
if ret["full"][0]['score'] <= 0.90:
|
| 134 |
+
print("[!] error in image digit recognition, likely to not find a similar score")
|
| 135 |
+
sys.exit()
|
| 136 |
+
gen_filepath = file_path + 'generated_image.png'
|
| 137 |
+
gen_label = ret['number']
|
| 138 |
+
ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit)
|
| 139 |
+
print("[+] done sims")
|
| 140 |
+
# get the file-Path
|
| 141 |
+
return (file_path + 'generated_image.png', ret_sims)
|
| 142 |
+
|
| 143 |
+
def generate_and_save_images(model):
|
| 144 |
+
noise_dim = 100
|
| 145 |
+
num_examples_to_generate = 1
|
| 146 |
+
seed = tf.random.normal([num_examples_to_generate, noise_dim])
|
| 147 |
+
|
| 148 |
+
# print(seed)
|
| 149 |
+
|
| 150 |
+
n_samples = 1
|
| 151 |
+
# Notice `training` is set to False.
|
| 152 |
+
# This is so all layers run in inference mode (batchnorm).
|
| 153 |
+
examples = model(seed, training=False)
|
| 154 |
+
examples = examples * 255.0
|
| 155 |
+
size = ceil(sqrt(n_samples))
|
| 156 |
+
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
| 157 |
+
n = 0
|
| 158 |
+
for i in range(size):
|
| 159 |
+
for j in range(size):
|
| 160 |
+
if n == n_samples:
|
| 161 |
+
break
|
| 162 |
+
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
| 163 |
+
n += 1
|
| 164 |
+
digit_images = (digit_images/127.5) -1
|
| 165 |
+
return digit_images
|
| 166 |
+
|
| 167 |
+
def TextToImage(Prompt,inference_steps, model):
|
| 168 |
+
model_id = model
|
| 169 |
+
if 'GAN' in model_id:
|
| 170 |
+
print("do something else")
|
| 171 |
+
model = from_pretrained_keras(model)
|
| 172 |
+
image = generate_and_save_images(model)
|
| 173 |
+
else:
|
| 174 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
| 175 |
+
the_randomness = int(str(time.time())[-1])
|
| 176 |
+
print('seed', the_randomness)
|
| 177 |
+
image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0]
|
| 178 |
+
|
| 179 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 180 |
+
# pipe = pipe.to("cpu")
|
| 181 |
+
|
| 182 |
+
prompt = Prompt
|
| 183 |
+
print(prompt)
|
| 184 |
+
hunting_time_limit = None
|
| 185 |
+
if prompt.isnumeric():
|
| 186 |
+
hunting_time_limit = abs(int(prompt))
|
| 187 |
+
|
| 188 |
+
original_image, other_images = get_other(image, hunting_time_limit)
|
| 189 |
+
ai_gen = Image.open(open(original_image, 'rb'))
|
| 190 |
+
training_data = Image.open(open(other_images, 'rb'))
|
| 191 |
+
return [ai_gen, training_data]
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
import gradio as gr
|
| 195 |
+
interface = gr.Interface(fn=TextToImage,
|
| 196 |
+
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
|
| 197 |
+
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
|
| 198 |
+
# css="#output_image{width: 256px !important; height: 256px !important;}",
|
| 199 |
+
title='Unconditional Image Generation')
|
| 200 |
+
|
| 201 |
+
interface.launch()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# import tensorflow as tf
|
| 208 |
+
# from diffusers import DiffusionPipeline
|
| 209 |
+
# import spaces
|
| 210 |
+
# # import torch
|
| 211 |
+
# import PIL.Image
|
| 212 |
+
# from PIL import Image
|
| 213 |
+
# from torch.autograd import Variable
|
| 214 |
+
# import gradio as gr
|
| 215 |
+
# import gradio.components as grc
|
| 216 |
+
# import numpy as np
|
| 217 |
+
# from huggingface_hub import from_pretrained_keras
|
| 218 |
+
# from image_similarity_measures.evaluate import evaluation
|
| 219 |
+
# import keras
|
| 220 |
+
# import time
|
| 221 |
+
# import requests
|
| 222 |
+
# import matplotlib.pyplot as plt
|
| 223 |
+
# import os
|
| 224 |
+
# from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
|
| 225 |
+
# from gradio_imageslider import ImageSlider
|
| 226 |
+
|
| 227 |
+
# # os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
| 228 |
+
|
| 229 |
+
# # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
| 233 |
+
# # device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 234 |
+
# # pipeline = pipeline.to(device=device)
|
| 235 |
+
|
| 236 |
+
# # @spaces.GPU
|
| 237 |
+
# # def predict(steps, seed):
|
| 238 |
+
# # print("HI")
|
| 239 |
+
# # generator = torch.manual_seed(seed)
|
| 240 |
+
# # for i in range(1,steps):
|
| 241 |
+
# # yield pipeline(generator=generator, num_inference_steps=i).images[0]
|
| 242 |
+
|
| 243 |
+
# # gr.Interface(
|
| 244 |
+
# # predict,
|
| 245 |
+
# # inputs=[
|
| 246 |
+
# # grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
|
| 247 |
+
# # grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
|
| 248 |
+
# # ],
|
| 249 |
+
# # outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
|
| 250 |
+
# # css="#output_image{width: 256px !important; height: 256px !important;}",
|
| 251 |
+
# # title="Model Problems: Infringing on MNIST!",
|
| 252 |
+
# # description="Opening the black box.",
|
| 253 |
+
# # ).queue().launch()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# from diffusers import StableDiffusionPipeline
|
| 257 |
+
# import torch
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# modellist=['nathanReitinger/MNIST-diffusion-oneImage',
|
| 261 |
+
# 'nathanReitinger/MNIST-diffusion',
|
| 262 |
+
# # 'nathanReitinger/MNIST-GAN',
|
| 263 |
+
# # 'nathanReitinger/MNIST-GAN-noDropout'
|
| 264 |
+
# ]
|
| 265 |
+
|
| 266 |
+
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
| 267 |
+
# # device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 268 |
+
# # pipeline = pipeline.to(device=device)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
# def getModel(model):
|
| 272 |
+
# model_id = model
|
| 273 |
+
|
| 274 |
+
# (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
|
| 275 |
+
# RANDO = str(time.time())
|
| 276 |
+
# file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
|
| 277 |
+
# os.makedirs(file_path)
|
| 278 |
+
# train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
|
| 279 |
+
# train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
|
| 280 |
+
|
| 281 |
+
# print(model_id)
|
| 282 |
+
# image = None
|
| 283 |
+
# if 'diffusion' in model_id:
|
| 284 |
+
# pipe = DiffusionPipeline.from_pretrained(model_id)
|
| 285 |
+
# pipe = pipe.to("cpu")
|
| 286 |
+
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
|
| 287 |
+
# else:
|
| 288 |
+
# pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
|
| 289 |
+
# pipe = pipe.to("cpu")
|
| 290 |
+
# test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
|
| 291 |
+
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
|
| 292 |
+
|
| 293 |
+
# ########################################### let's save this image for comparison to others
|
| 294 |
+
# fig = plt.figure(figsize=(1, 1))
|
| 295 |
+
# plt.subplot(1, 1, 0+1)
|
| 296 |
+
# plt.imshow(image, cmap='gray')
|
| 297 |
+
# plt.axis('off')
|
| 298 |
+
# plt.savefig(file_path + 'generated_image.png')
|
| 299 |
+
# plt.close()
|
| 300 |
+
|
| 301 |
+
# API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
|
| 302 |
+
|
| 303 |
+
# # get a prediction on what number this is
|
| 304 |
+
# def query(filename):
|
| 305 |
+
# with open(filename, "rb") as f:
|
| 306 |
+
# data = f.read()
|
| 307 |
+
# response = requests.post(API_URL, data=data)
|
| 308 |
+
# return response.json()
|
| 309 |
+
|
| 310 |
+
# # use latest model to generate a new image, return path
|
| 311 |
+
# ret = False
|
| 312 |
+
# output = None
|
| 313 |
+
# while ret == False:
|
| 314 |
+
# output = query(file_path + 'generated_image.png')
|
| 315 |
+
# if 'error' in output:
|
| 316 |
+
# time.sleep(10)
|
| 317 |
+
# ret = False
|
| 318 |
+
# else:
|
| 319 |
+
# ret = True
|
| 320 |
+
# print(output)
|
| 321 |
+
|
| 322 |
+
# low_score_log = ''
|
| 323 |
+
# this_label_for_this_image = int(output[0]['label'])
|
| 324 |
+
# low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
|
| 325 |
+
# print("===================")
|
| 326 |
+
|
| 327 |
+
# lowest_score = 10000
|
| 328 |
+
# lowest_image = None
|
| 329 |
+
|
| 330 |
+
# for i in range(len(train_labels)):
|
| 331 |
+
# # print(i)
|
| 332 |
+
# if train_labels[i] == this_label_for_this_image:
|
| 333 |
+
|
| 334 |
+
# ###
|
| 335 |
+
# # get a real image (of correct number)
|
| 336 |
+
# ###
|
| 337 |
+
|
| 338 |
+
# # print(i)
|
| 339 |
+
# to_check = train_images[i]
|
| 340 |
+
# fig = plt.figure(figsize=(1, 1))
|
| 341 |
+
# plt.subplot(1, 1, 0+1)
|
| 342 |
+
# plt.imshow(to_check, cmap='gray')
|
| 343 |
+
# plt.axis('off')
|
| 344 |
+
# plt.savefig(file_path + 'real_deal.png')
|
| 345 |
+
# plt.close()
|
| 346 |
+
|
| 347 |
+
# # baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
|
| 348 |
+
# # print("---")
|
| 349 |
+
|
| 350 |
+
# ###
|
| 351 |
+
# # check how close that real training data is to generated number
|
| 352 |
+
# ###
|
| 353 |
+
# results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
|
| 354 |
+
# if results['rmse'] < lowest_score:
|
| 355 |
+
|
| 356 |
+
# lowest_score = results['rmse']
|
| 357 |
+
# lowest_image = to_check
|
| 358 |
+
|
| 359 |
+
# # image1 = np.array(Image.open(file_path + 'real_deal.png'))
|
| 360 |
+
# # image2 = np.array(Image.open(file_path + 'generated_image.png'))
|
| 361 |
+
# # img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
|
| 362 |
+
# # img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
|
| 363 |
+
# # img1 = Variable( img1, requires_grad=False)
|
| 364 |
+
# # img2 = Variable( img2, requires_grad=True)
|
| 365 |
+
# # ssim_score = ssim(img1, img2).item()
|
| 366 |
+
|
| 367 |
+
# # # sys.exit()
|
| 368 |
+
# # # l2 = distance.euclidean(image1, image2)
|
| 369 |
+
|
| 370 |
+
# # low_score_log += 'rmse score:' + str(lowest_score) + "\n"
|
| 371 |
+
# # low_score_log += 'ssim score:' + str(ssim_score) + "\n"
|
| 372 |
+
# # low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
|
| 373 |
+
|
| 374 |
+
# # low_score_log += "---------\n"
|
| 375 |
+
|
| 376 |
+
# # print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
|
| 377 |
+
|
| 378 |
+
# # fig = plt.figure(figsize=(1, 1))
|
| 379 |
+
# # plt.subplot(1, 1, 0+1)
|
| 380 |
+
# # plt.imshow(to_check, cmap='gray')
|
| 381 |
+
# # plt.axis('off')
|
| 382 |
+
# # plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
|
| 383 |
+
# # plt.close()
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
# # f = open(file_path + "score_log.txt", "w+")
|
| 387 |
+
# # f.write(low_score_log)
|
| 388 |
+
# # f.close()
|
| 389 |
+
|
| 390 |
+
# print("Done!")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# ############################################ return image that you just generated
|
| 394 |
+
# return [image, lowest_image]
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
# import gradio as gr
|
| 398 |
+
# output = "image"
|
| 399 |
+
# interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output, title='Model Problems (infringement)') # outputs="image",
|
| 400 |
+
# interface.launch(debug=True)
|
flagged/log.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Inference Steps,Seed,output,flag,username,timestamp
|
| 2 |
+
48,42,flagged/output/a7d3e3ed399e14f7629e/image.webp,,,2024-04-28 21:23:26.366305
|
flagged/output/a7d3e3ed399e14f7629e/image.webp
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Automatically generated by https://github.com/damnever/pigar.
|
| 2 |
+
|
| 3 |
+
diffusers==0.27.2
|
| 4 |
+
gradio==4.28.3
|
| 5 |
+
gradio_imageslider==0.0.20
|
| 6 |
+
huggingface-hub==0.22.2
|
| 7 |
+
image-similarity-measures==0.3.6
|
| 8 |
+
keras==2.11.0
|
| 9 |
+
matplotlib==3.8.4
|
| 10 |
+
numpy==1.25.2
|
| 11 |
+
pillow==10.3.0
|
| 12 |
+
pytorch-msssim==1.0.0
|
| 13 |
+
requests==2.31.0
|
| 14 |
+
spaces==0.26.2
|
| 15 |
+
tensorflow==2.11.0
|
| 16 |
+
torch==2.2.2
|
tester/generation/1714450388.794121/generated_image.png
ADDED
|
tester/generation/1714450388.794121/keeper.png
ADDED
|
tester/generation/1714450388.794121/real_deal.png
ADDED
|