Spaces:
Runtime error
Runtime error
File size: 11,106 Bytes
3e96755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import cv2
import gradio as gr
import numpy as np
from sklearn.linear_model import LinearRegression
checker_large_real = 10.8
checker_small_real = 6.35
def check_orientation(image):
#image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
orientation = np.argmax(image.shape)
if orientation == 0:
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
return image, orientation
def get_color_checker_table(data_points, y, yend):
sorted_points = sorted(data_points, key=lambda point: (point[1], point[0]))
differences_y = [sorted_points[0][1] - y] + \
[abs(sorted_points[i][1] - sorted_points[i + 1][1]) for i in range(len(sorted_points) - 1)] + \
[yend - sorted_points[-1][1]]
most_usual_y = 10
local_max = round((yend - y) * 0.2184)
lines = []
last_id = 0
label_upper = differences_y[0] // local_max if differences_y[0] > local_max + 10 else 0
label_lower = differences_y[-1] // local_max if differences_y[-1] > local_max + 10 else 0
for j in range(len(differences_y) - 1):
if differences_y[j] > local_max + 10:
lines.extend([[] for _ in range(label_upper)])
break
for i in range(1, len(differences_y) - 1):
if differences_y[i] > most_usual_y:
lines.append(sorted_points[last_id:i])
last_id = i
if differences_y[-1] < local_max + 10:
lines.append(sorted_points[last_id:])
else:
lines.append(sorted_points[last_id:])
lines.extend([[] for _ in range(label_lower)])
lines = [sorted(line, key=lambda point: point[0]) for line in lines]
return label_upper, label_lower, local_max, lines
def check_points(data_points, x, xend, y, yend, image):
most_usual = int((xend - x) / 7.016)
label_upper, label_lower, usual_y, lines = get_color_checker_table(data_points, y, yend)
for q in lines:
if not q:
continue
differences_x = [q[0][0] - x] + [q[i + 1][0] - q[i][0] for i in range(len(q) - 1)] + [xend - q[-1][0]]
threshold_x = int(most_usual * (1 + 1 / 5.6))
for j, distance in enumerate(differences_x[:-1]):
if distance > threshold_x:
positions = distance // int(most_usual * (1 - 1 / 11.2)) - 1
for t in range(positions):
cnt = (q[j][0] - (t + 1) * most_usual, q[j][1])
# cv2.circle(image, cnt, 5, (255, 0, 0), -1)
data_points.append(cnt)
if differences_x[-1] > threshold_x:
positions = differences_x[-1] // int(most_usual * (1 - 1 / 11.2)) - 1
for t in range(positions):
cnt = (q[-1][0] + (t + 1) * most_usual, q[-1][1])
# cv2.circle(image, cnt, 5, (255, 0, 0), -1)
data_points.append(cnt)
data_points.sort(key=lambda point: (point[1], point[0]))
_, _, _, new_lines = get_color_checker_table(data_points, y, yend)
return label_upper, label_lower, usual_y, image, new_lines, data_points
def get_reference_values(points, image):
values = []
for i in points:
point_value = image[i[1], i[0]]
values.append(point_value)
return values
def detect_RGB_values(image, dst):
x1, y1 = map(round, dst[0][0])
x2, y2 = map(round, dst[2][0])
y2 = max(0, y2)
image_checker = image[y1:y2, x2:x1]
if image_checker.size != 0:
# Apply GaussianBlur to reduce noise and improve edge detection
blurred = cv2.GaussianBlur(image_checker, (5, 5), 0)
# Apply edge detection
edges = cv2.Canny(blurred, 50, 120)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
centers = [
(x + w // 2 + x2, y + h // 2 + y1)
for contour in contours
for x, y, w, h in [cv2.boundingRect(contour)]
if 0.8 < (aspect_ratio := w / float(h)) < 1.2 and (area := cv2.contourArea(contour)) > 100
]
if centers:
# Filter out centers too close to the edges
centers = [
center for center in centers
if abs(center[0] - x2) >= (x1 - x2) / 7.29 and abs(center[0] - x1) >= (x1 - x2) / 7.29
]
if centers:
label_upper, label_lower, usual, image, new_lines, M_T = check_points(centers, x2, x1, y1, y2, image)
else:
label_upper, label_lower, M_T = 0, 0, []
else:
label_upper, label_lower, M_T = 0, 0, []
else:
label_upper, label_lower, M_T = 0, 0, []
M_R = np.array([
[52, 52, 52], [85, 85, 85], [122, 122, 121], [160, 160, 160],
[200, 200, 200], [243, 243, 242], [8, 133, 161], [187, 86, 149],
[231, 199, 31], [175, 54, 60], [70, 148, 73], [56, 61, 150],
[224, 163, 46], [157, 188, 64], [94, 60, 108], [193, 90, 99],
[80, 91, 166], [214, 126, 44], [103, 189, 170], [133, 128, 177],
[87, 108, 67], [98, 122, 157], [194, 150, 130], [115, 82, 68]
])
if len(M_T) < 24:
for i in range(label_upper):
new_lines[0] = [(x, y - round(usual)) for x, y in new_lines[1]]
for j in range(label_lower):
new_lines[-1] = [(x, y + round(usual)) for x, y in new_lines[-2]]
if len(M_T) != 24:
new_lines = []
M_T = [point for sublist in new_lines for point in sublist]
M_T_values = np.array(get_reference_values(M_T, image))
return M_T_values, M_R
css = ".input_image {height: 10% !important; width: 10% !important;}"
def detect_template(image, orientation):
MIN_MATCH_COUNT = 10
template_path = 'template_img.png'
template_image = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image_c = image.copy()
# Initiate SIFT detector
sift = cv2.SIFT_create()
keypoints1, descriptors1 = sift.detectAndCompute(template_image, None)
keypoints2, descriptors2 = sift.detectAndCompute(gray_image, None)
# FLANN parameters
index_params = dict(algorithm=1, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(descriptors1, descriptors2, k=2)
# Apply ratio test
good_matches = [m for m, n in matches if m.distance < 0.7 * n.distance]
if len(good_matches) > MIN_MATCH_COUNT:
src_points = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_points = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_points, dst_points, cv2.RANSAC, 5.0)
h, w = template_image.shape
template_corners = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
dst_corners = cv2.perspectiveTransform(template_corners, M)
x1, y1 = map(round, dst_corners[0][0])
x2, y2 = map(round, dst_corners[2][0])
# if orientation == 0:
# checker_large_im = abs(y2 - y1)
# checker_small_im = abs(x2 - x1)
# else:
checker_small_im = abs(y2 - y1)
checker_large_im = abs(x2 - x1)
if checker_small_im != 0 and checker_large_im != 0:
px_cm_ratio_small = checker_small_real / checker_small_im
px_cm_ratio_large = checker_large_real / checker_large_im
else:
px_cm_ratio_small = 0
px_cm_ratio_large = 0
annotated_image = cv2.polylines(image_c, [np.int32(dst_corners)], True, 255, 3, cv2.LINE_AA)
if orientation == 0:
annotated_image = cv2.rotate(annotated_image, cv2.ROTATE_90_COUNTERCLOCKWISE)
else:
print(f"Not enough matches are found - {len(good_matches)}/{MIN_MATCH_COUNT}")
return None, 0, 0
if orientation ==0:
cm_per_pixel_width = px_cm_ratio_small
cm_per_pixel_height = px_cm_ratio_large
else:
cm_per_pixel_width = px_cm_ratio_large
cm_per_pixel_height = px_cm_ratio_small
return annotated_image, dst_corners, cm_per_pixel_width, cm_per_pixel_height,checker_small_im,checker_large_im
def srgb_to_linear(rgb):
rgb = rgb / 255.0
linear_rgb = np.where(rgb <= 0.04045, rgb / 12.92, ((rgb + 0.055) / 1.055) ** 2.4)
return linear_rgb
def linear_to_srgb(linear_rgb):
# Clip linear_rgb to ensure no negative values
linear_rgb = np.clip(linear_rgb, 0, 1)
srgb = np.where(linear_rgb <= 0.0031308, linear_rgb * 12.92, 1.055 * (linear_rgb ** (1 / 2.4)) - 0.055)
srgb = np.clip(srgb * 255, 0, 255)
return srgb.astype(np.uint8)
def calculate_color_correction_matrix_ransac(sample_rgb, reference_rgb):
sample_rgb = sample_rgb[::-1]
sample_rgb_linear = srgb_to_linear(sample_rgb)
reference_rgb_linear = srgb_to_linear(reference_rgb)
# Reshape the data for RANSAC
X = sample_rgb_linear
y = reference_rgb_linear
# Initialize RANSAC regressor for each color channel
models = []
scores = []
for i in range(3): # For each RGB channel
ransac = LinearRegression()
ransac.fit(X, y[:, i])
scores.append(ransac.score(X, y[:, i]))
models.append(ransac.coef_)
score = np.mean(scores)
# Stack coefficients to form the transformation matrix
M = np.stack(models, axis=-1)
return M, score
def apply_color_correction(image, M):
image_linear = srgb_to_linear(image)
corrected_image_linear = np.dot(image_linear, M)
corrected_image_srgb = linear_to_srgb(corrected_image_linear)
return corrected_image_srgb
def calibrate_img(img):
image, orientation = check_orientation(img)
annotated_image, polygon, px_width, px_height,small_side,large_side = detect_template(image, orientation)
a, b = detect_RGB_values(image, polygon)
if len(a) == 24:
M, score = calculate_color_correction_matrix_ransac(a, b)
if orientation == 0:
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
corrected_image = apply_color_correction(image, M)
#corrected_image = cv2.cvtColor(corrected_image, cv2.COLOR_BGR2RGB)
if orientation == 0:
width= small_side
height= large_side
else:
width = large_side
height = small_side
return annotated_image, corrected_image, px_width, px_height, width, height
def process_img(img):
return calibrate_img(img)
app = gr.Interface(
fn=process_img,
inputs=gr.Image(label="Input"),
css=css,
outputs=[gr.Image(label="Output"), gr.Image(label="Corrected"), gr.Label(label='Cm/px for Width'),
gr.Label(label='Cm/px for Height'), gr.Label(label='Checker Width'),
gr.Label(label='Checker Height'),],
allow_flagging='never')
app.launch(share=True)
|