napatswift commited on
Commit
f8610ca
·
1 Parent(s): b650184
Dockerfile ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ RUN mim install mmengine
10
+ RUN mim install 'mmcv>=2.0.0rc1'
11
+ RUN mim install 'mmdet>=3.0.0rc0'
12
+
13
+ # Set up a new user named "user" with user ID 1000
14
+ RUN useradd -m -u 1000 user
15
+ # Switch to the "user" user
16
+ USER user
17
+ # Set home to the user's home directory
18
+ ENV HOME=/home/user \
19
+ PATH=/home/user/.local/bin:$PATH
20
+
21
+ # Set the working directory to the user's home directory
22
+ WORKDIR $HOME/app
23
+
24
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
25
+ COPY --chown=user . $HOME/app
26
+
27
+ CMD ["python", "main.py"]
main.py ADDED
File without changes
model/20230224_051330.log ADDED
@@ -0,0 +1,755 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023/02/24 05:13:32 - mmengine - INFO -
2
+ ------------------------------------------------------------
3
+ System environment:
4
+ sys.platform: linux
5
+ Python: 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
6
+ CUDA available: True
7
+ numpy_random_seed: 1569491978
8
+ GPU 0: Tesla T4
9
+ CUDA_HOME: /usr/local/cuda
10
+ NVCC: Cuda compilation tools, release 11.6, V11.6.124
11
+ GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
12
+ PyTorch: 1.13.1+cu116
13
+ PyTorch compiling details: PyTorch built with:
14
+ - GCC 9.3
15
+ - C++ Version: 201402
16
+ - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
17
+ - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
18
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
19
+ - LAPACK is enabled (usually provided by MKL)
20
+ - NNPACK is enabled
21
+ - CPU capability usage: AVX2
22
+ - CUDA Runtime 11.6
23
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
24
+ - CuDNN 8.3.2 (built against CUDA 11.5)
25
+ - Magma 2.6.1
26
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
27
+
28
+ TorchVision: 0.14.1+cu116
29
+ OpenCV: 4.6.0
30
+ MMEngine: 0.5.0
31
+
32
+ Runtime environment:
33
+ cudnn_benchmark: True
34
+ mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
35
+ dist_cfg: {'backend': 'nccl'}
36
+ seed: None
37
+ Distributed launcher: none
38
+ Distributed training: False
39
+ GPU number: 1
40
+ ------------------------------------------------------------
41
+
42
+ 2023/02/24 05:13:33 - mmengine - INFO - Config:
43
+ file_client_args = dict(backend='disk')
44
+ model = dict(
45
+ type='DBNet',
46
+ backbone=dict(
47
+ type='mmdet.ResNet',
48
+ depth=18,
49
+ num_stages=4,
50
+ out_indices=(0, 1, 2, 3),
51
+ frozen_stages=-1,
52
+ norm_cfg=dict(type='BN', requires_grad=True),
53
+ init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
54
+ norm_eval=False,
55
+ style='caffe'),
56
+ neck=dict(
57
+ type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
58
+ det_head=dict(
59
+ type='DBHead',
60
+ in_channels=256,
61
+ module_loss=dict(type='DBModuleLoss'),
62
+ postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
63
+ data_preprocessor=dict(
64
+ type='TextDetDataPreprocessor',
65
+ mean=[123.675, 116.28, 103.53],
66
+ std=[58.395, 57.12, 57.375],
67
+ bgr_to_rgb=True,
68
+ pad_size_divisor=32))
69
+ train_pipeline = [
70
+ dict(
71
+ type='LoadImageFromFile',
72
+ file_client_args=dict(backend='disk'),
73
+ color_type='color_ignore_orientation'),
74
+ dict(
75
+ type='LoadOCRAnnotations',
76
+ with_polygon=True,
77
+ with_bbox=True,
78
+ with_label=True),
79
+ dict(
80
+ type='TorchVisionWrapper',
81
+ op='ColorJitter',
82
+ brightness=0.12549019607843137,
83
+ saturation=0.5),
84
+ dict(
85
+ type='ImgAugWrapper',
86
+ args=[['Fliplr', 0.5], {
87
+ 'cls': 'Affine',
88
+ 'rotate': [-10, 10]
89
+ }, ['Resize', [0.5, 3.0]]]),
90
+ dict(type='RandomCrop', min_side_ratio=0.1),
91
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
92
+ dict(type='Pad', size=(640, 640)),
93
+ dict(
94
+ type='PackTextDetInputs',
95
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
96
+ ]
97
+ test_pipeline = [
98
+ dict(
99
+ type='LoadImageFromFile',
100
+ file_client_args=dict(backend='disk'),
101
+ color_type='color_ignore_orientation'),
102
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
103
+ dict(
104
+ type='LoadOCRAnnotations',
105
+ with_polygon=True,
106
+ with_bbox=True,
107
+ with_label=True),
108
+ dict(
109
+ type='PackTextDetInputs',
110
+ meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
111
+ ]
112
+ icdar2015_textdet_data_root = 'data/det/textdet-thvote'
113
+ icdar2015_textdet_train = dict(
114
+ type='OCRDataset',
115
+ data_root='data/det/textdet-thvote',
116
+ ann_file='textdet_train.json',
117
+ data_prefix=dict(img_path='imgs/'),
118
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
119
+ pipeline=[
120
+ dict(
121
+ type='LoadImageFromFile',
122
+ file_client_args=dict(backend='disk'),
123
+ color_type='color_ignore_orientation'),
124
+ dict(
125
+ type='LoadOCRAnnotations',
126
+ with_polygon=True,
127
+ with_bbox=True,
128
+ with_label=True),
129
+ dict(
130
+ type='TorchVisionWrapper',
131
+ op='ColorJitter',
132
+ brightness=0.12549019607843137,
133
+ saturation=0.5),
134
+ dict(
135
+ type='ImgAugWrapper',
136
+ args=[['Fliplr', 0.5], {
137
+ 'cls': 'Affine',
138
+ 'rotate': [-10, 10]
139
+ }, ['Resize', [0.5, 3.0]]]),
140
+ dict(type='RandomCrop', min_side_ratio=0.1),
141
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
142
+ dict(type='Pad', size=(640, 640)),
143
+ dict(
144
+ type='PackTextDetInputs',
145
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
146
+ ])
147
+ icdar2015_textdet_test = dict(
148
+ type='OCRDataset',
149
+ data_root='data/det/textdet-thvote',
150
+ ann_file='textdet_test.json',
151
+ data_prefix=dict(img_path='imgs/'),
152
+ test_mode=True,
153
+ pipeline=[
154
+ dict(
155
+ type='LoadImageFromFile',
156
+ file_client_args=dict(backend='disk'),
157
+ color_type='color_ignore_orientation'),
158
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
159
+ dict(
160
+ type='LoadOCRAnnotations',
161
+ with_polygon=True,
162
+ with_bbox=True,
163
+ with_label=True),
164
+ dict(
165
+ type='PackTextDetInputs',
166
+ meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
167
+ ])
168
+ default_scope = 'mmocr'
169
+ env_cfg = dict(
170
+ cudnn_benchmark=True,
171
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
172
+ dist_cfg=dict(backend='nccl'))
173
+ randomness = dict(seed=None)
174
+ default_hooks = dict(
175
+ timer=dict(type='IterTimerHook'),
176
+ logger=dict(type='LoggerHook', interval=5),
177
+ param_scheduler=dict(type='ParamSchedulerHook'),
178
+ checkpoint=dict(type='CheckpointHook', interval=20),
179
+ sampler_seed=dict(type='DistSamplerSeedHook'),
180
+ sync_buffer=dict(type='SyncBuffersHook'),
181
+ visualization=dict(
182
+ type='VisualizationHook',
183
+ interval=1,
184
+ enable=False,
185
+ show=False,
186
+ draw_gt=False,
187
+ draw_pred=False))
188
+ log_level = 'INFO'
189
+ log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
190
+ load_from = None
191
+ resume = False
192
+ val_evaluator = dict(type='HmeanIOUMetric')
193
+ test_evaluator = dict(type='HmeanIOUMetric')
194
+ vis_backends = [dict(type='LocalVisBackend')]
195
+ visualizer = dict(
196
+ type='TextDetLocalVisualizer',
197
+ name='visualizer',
198
+ vis_backends=[dict(type='LocalVisBackend')])
199
+ optim_wrapper = dict(
200
+ type='OptimWrapper',
201
+ optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
202
+ train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
203
+ val_cfg = dict(type='ValLoop')
204
+ test_cfg = dict(type='TestLoop')
205
+ param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
206
+ train_dataloader = dict(
207
+ batch_size=16,
208
+ num_workers=8,
209
+ persistent_workers=True,
210
+ sampler=dict(type='DefaultSampler', shuffle=True),
211
+ dataset=dict(
212
+ type='OCRDataset',
213
+ data_root='data/det/textdet-thvote',
214
+ ann_file='textdet_train.json',
215
+ data_prefix=dict(img_path='imgs/'),
216
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
217
+ pipeline=[
218
+ dict(
219
+ type='LoadImageFromFile',
220
+ file_client_args=dict(backend='disk'),
221
+ color_type='color_ignore_orientation'),
222
+ dict(
223
+ type='LoadOCRAnnotations',
224
+ with_polygon=True,
225
+ with_bbox=True,
226
+ with_label=True),
227
+ dict(
228
+ type='TorchVisionWrapper',
229
+ op='ColorJitter',
230
+ brightness=0.12549019607843137,
231
+ saturation=0.5),
232
+ dict(
233
+ type='ImgAugWrapper',
234
+ args=[['Fliplr', 0.5], {
235
+ 'cls': 'Affine',
236
+ 'rotate': [-10, 10]
237
+ }, ['Resize', [0.5, 3.0]]]),
238
+ dict(type='RandomCrop', min_side_ratio=0.1),
239
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
240
+ dict(type='Pad', size=(640, 640)),
241
+ dict(
242
+ type='PackTextDetInputs',
243
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
244
+ ]))
245
+ val_dataloader = dict(
246
+ batch_size=1,
247
+ num_workers=4,
248
+ persistent_workers=True,
249
+ sampler=dict(type='DefaultSampler', shuffle=False),
250
+ dataset=dict(
251
+ type='OCRDataset',
252
+ data_root='data/det/textdet-thvote',
253
+ ann_file='textdet_test.json',
254
+ data_prefix=dict(img_path='imgs/'),
255
+ test_mode=True,
256
+ pipeline=[
257
+ dict(
258
+ type='LoadImageFromFile',
259
+ file_client_args=dict(backend='disk'),
260
+ color_type='color_ignore_orientation'),
261
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
262
+ dict(
263
+ type='LoadOCRAnnotations',
264
+ with_polygon=True,
265
+ with_bbox=True,
266
+ with_label=True),
267
+ dict(
268
+ type='PackTextDetInputs',
269
+ meta_keys=('img_path', 'ori_shape', 'img_shape',
270
+ 'scale_factor'))
271
+ ]))
272
+ test_dataloader = dict(
273
+ batch_size=1,
274
+ num_workers=4,
275
+ persistent_workers=True,
276
+ sampler=dict(type='DefaultSampler', shuffle=False),
277
+ dataset=dict(
278
+ type='OCRDataset',
279
+ data_root='data/det/textdet-thvote',
280
+ ann_file='textdet_test.json',
281
+ data_prefix=dict(img_path='imgs/'),
282
+ test_mode=True,
283
+ pipeline=[
284
+ dict(
285
+ type='LoadImageFromFile',
286
+ file_client_args=dict(backend='disk'),
287
+ color_type='color_ignore_orientation'),
288
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
289
+ dict(
290
+ type='LoadOCRAnnotations',
291
+ with_polygon=True,
292
+ with_bbox=True,
293
+ with_label=True),
294
+ dict(
295
+ type='PackTextDetInputs',
296
+ meta_keys=('img_path', 'ori_shape', 'img_shape',
297
+ 'scale_factor'))
298
+ ]))
299
+ auto_scale_lr = dict(base_batch_size=16)
300
+ launcher = 'none'
301
+ work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
302
+
303
+ 2023/02/24 05:13:33 - mmengine - WARNING - The "visualizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
304
+ 2023/02/24 05:13:33 - mmengine - WARNING - The "vis_backend" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
305
+ 2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
306
+ 2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmdet did not set import location. Fallback to call `mmdet.utils.register_all_modules` instead.
307
+ 2023/02/24 05:13:38 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
308
+ 2023/02/24 05:13:38 - mmengine - WARNING - The "hook" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
309
+ 2023/02/24 05:13:38 - mmengine - INFO - Hooks will be executed in the following order:
310
+ before_run:
311
+ (VERY_HIGH ) RuntimeInfoHook
312
+ (BELOW_NORMAL) LoggerHook
313
+ --------------------
314
+ before_train:
315
+ (VERY_HIGH ) RuntimeInfoHook
316
+ (NORMAL ) IterTimerHook
317
+ (VERY_LOW ) CheckpointHook
318
+ --------------------
319
+ before_train_epoch:
320
+ (VERY_HIGH ) RuntimeInfoHook
321
+ (NORMAL ) IterTimerHook
322
+ (NORMAL ) DistSamplerSeedHook
323
+ --------------------
324
+ before_train_iter:
325
+ (VERY_HIGH ) RuntimeInfoHook
326
+ (NORMAL ) IterTimerHook
327
+ --------------------
328
+ after_train_iter:
329
+ (VERY_HIGH ) RuntimeInfoHook
330
+ (NORMAL ) IterTimerHook
331
+ (BELOW_NORMAL) LoggerHook
332
+ (LOW ) ParamSchedulerHook
333
+ (VERY_LOW ) CheckpointHook
334
+ --------------------
335
+ after_train_epoch:
336
+ (NORMAL ) IterTimerHook
337
+ (NORMAL ) SyncBuffersHook
338
+ (LOW ) ParamSchedulerHook
339
+ (VERY_LOW ) CheckpointHook
340
+ --------------------
341
+ before_val_epoch:
342
+ (NORMAL ) IterTimerHook
343
+ --------------------
344
+ before_val_iter:
345
+ (NORMAL ) IterTimerHook
346
+ --------------------
347
+ after_val_iter:
348
+ (NORMAL ) IterTimerHook
349
+ (NORMAL ) VisualizationHook
350
+ (BELOW_NORMAL) LoggerHook
351
+ --------------------
352
+ after_val_epoch:
353
+ (VERY_HIGH ) RuntimeInfoHook
354
+ (NORMAL ) IterTimerHook
355
+ (BELOW_NORMAL) LoggerHook
356
+ (LOW ) ParamSchedulerHook
357
+ (VERY_LOW ) CheckpointHook
358
+ --------------------
359
+ before_test_epoch:
360
+ (NORMAL ) IterTimerHook
361
+ --------------------
362
+ before_test_iter:
363
+ (NORMAL ) IterTimerHook
364
+ --------------------
365
+ after_test_iter:
366
+ (NORMAL ) IterTimerHook
367
+ (NORMAL ) VisualizationHook
368
+ (BELOW_NORMAL) LoggerHook
369
+ --------------------
370
+ after_test_epoch:
371
+ (VERY_HIGH ) RuntimeInfoHook
372
+ (NORMAL ) IterTimerHook
373
+ (BELOW_NORMAL) LoggerHook
374
+ --------------------
375
+ after_run:
376
+ (BELOW_NORMAL) LoggerHook
377
+ --------------------
378
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "loop" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
379
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "dataset" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
380
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "transform" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
381
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "data sampler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
382
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer constructor" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
383
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
384
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "optim wrapper" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
385
+ 2023/02/24 05:13:39 - mmengine - WARNING - The "parameter scheduler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
386
+ 2023/02/24 05:13:40 - mmengine - WARNING - The "metric" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
387
+ 2023/02/24 05:13:40 - mmengine - WARNING - The "weight initializer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
388
+ 2023/02/24 05:13:40 - mmengine - INFO - load model from: torchvision://resnet18
389
+ 2023/02/24 05:13:40 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet18
390
+ 2023/02/24 05:13:40 - mmengine - WARNING - The model and loaded state dict do not match exactly
391
+
392
+ unexpected key in source state_dict: fc.weight, fc.bias
393
+
394
+ Name of parameter - Initialization information
395
+
396
+ backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
397
+ PretrainedInit: load from torchvision://resnet18
398
+
399
+ backbone.bn1.weight - torch.Size([64]):
400
+ PretrainedInit: load from torchvision://resnet18
401
+
402
+ backbone.bn1.bias - torch.Size([64]):
403
+ PretrainedInit: load from torchvision://resnet18
404
+
405
+ backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]):
406
+ PretrainedInit: load from torchvision://resnet18
407
+
408
+ backbone.layer1.0.bn1.weight - torch.Size([64]):
409
+ PretrainedInit: load from torchvision://resnet18
410
+
411
+ backbone.layer1.0.bn1.bias - torch.Size([64]):
412
+ PretrainedInit: load from torchvision://resnet18
413
+
414
+ backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
415
+ PretrainedInit: load from torchvision://resnet18
416
+
417
+ backbone.layer1.0.bn2.weight - torch.Size([64]):
418
+ PretrainedInit: load from torchvision://resnet18
419
+
420
+ backbone.layer1.0.bn2.bias - torch.Size([64]):
421
+ PretrainedInit: load from torchvision://resnet18
422
+
423
+ backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]):
424
+ PretrainedInit: load from torchvision://resnet18
425
+
426
+ backbone.layer1.1.bn1.weight - torch.Size([64]):
427
+ PretrainedInit: load from torchvision://resnet18
428
+
429
+ backbone.layer1.1.bn1.bias - torch.Size([64]):
430
+ PretrainedInit: load from torchvision://resnet18
431
+
432
+ backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
433
+ PretrainedInit: load from torchvision://resnet18
434
+
435
+ backbone.layer1.1.bn2.weight - torch.Size([64]):
436
+ PretrainedInit: load from torchvision://resnet18
437
+
438
+ backbone.layer1.1.bn2.bias - torch.Size([64]):
439
+ PretrainedInit: load from torchvision://resnet18
440
+
441
+ backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]):
442
+ PretrainedInit: load from torchvision://resnet18
443
+
444
+ backbone.layer2.0.bn1.weight - torch.Size([128]):
445
+ PretrainedInit: load from torchvision://resnet18
446
+
447
+ backbone.layer2.0.bn1.bias - torch.Size([128]):
448
+ PretrainedInit: load from torchvision://resnet18
449
+
450
+ backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
451
+ PretrainedInit: load from torchvision://resnet18
452
+
453
+ backbone.layer2.0.bn2.weight - torch.Size([128]):
454
+ PretrainedInit: load from torchvision://resnet18
455
+
456
+ backbone.layer2.0.bn2.bias - torch.Size([128]):
457
+ PretrainedInit: load from torchvision://resnet18
458
+
459
+ backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]):
460
+ PretrainedInit: load from torchvision://resnet18
461
+
462
+ backbone.layer2.0.downsample.1.weight - torch.Size([128]):
463
+ PretrainedInit: load from torchvision://resnet18
464
+
465
+ backbone.layer2.0.downsample.1.bias - torch.Size([128]):
466
+ PretrainedInit: load from torchvision://resnet18
467
+
468
+ backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]):
469
+ PretrainedInit: load from torchvision://resnet18
470
+
471
+ backbone.layer2.1.bn1.weight - torch.Size([128]):
472
+ PretrainedInit: load from torchvision://resnet18
473
+
474
+ backbone.layer2.1.bn1.bias - torch.Size([128]):
475
+ PretrainedInit: load from torchvision://resnet18
476
+
477
+ backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
478
+ PretrainedInit: load from torchvision://resnet18
479
+
480
+ backbone.layer2.1.bn2.weight - torch.Size([128]):
481
+ PretrainedInit: load from torchvision://resnet18
482
+
483
+ backbone.layer2.1.bn2.bias - torch.Size([128]):
484
+ PretrainedInit: load from torchvision://resnet18
485
+
486
+ backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]):
487
+ PretrainedInit: load from torchvision://resnet18
488
+
489
+ backbone.layer3.0.bn1.weight - torch.Size([256]):
490
+ PretrainedInit: load from torchvision://resnet18
491
+
492
+ backbone.layer3.0.bn1.bias - torch.Size([256]):
493
+ PretrainedInit: load from torchvision://resnet18
494
+
495
+ backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
496
+ PretrainedInit: load from torchvision://resnet18
497
+
498
+ backbone.layer3.0.bn2.weight - torch.Size([256]):
499
+ PretrainedInit: load from torchvision://resnet18
500
+
501
+ backbone.layer3.0.bn2.bias - torch.Size([256]):
502
+ PretrainedInit: load from torchvision://resnet18
503
+
504
+ backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]):
505
+ PretrainedInit: load from torchvision://resnet18
506
+
507
+ backbone.layer3.0.downsample.1.weight - torch.Size([256]):
508
+ PretrainedInit: load from torchvision://resnet18
509
+
510
+ backbone.layer3.0.downsample.1.bias - torch.Size([256]):
511
+ PretrainedInit: load from torchvision://resnet18
512
+
513
+ backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]):
514
+ PretrainedInit: load from torchvision://resnet18
515
+
516
+ backbone.layer3.1.bn1.weight - torch.Size([256]):
517
+ PretrainedInit: load from torchvision://resnet18
518
+
519
+ backbone.layer3.1.bn1.bias - torch.Size([256]):
520
+ PretrainedInit: load from torchvision://resnet18
521
+
522
+ backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
523
+ PretrainedInit: load from torchvision://resnet18
524
+
525
+ backbone.layer3.1.bn2.weight - torch.Size([256]):
526
+ PretrainedInit: load from torchvision://resnet18
527
+
528
+ backbone.layer3.1.bn2.bias - torch.Size([256]):
529
+ PretrainedInit: load from torchvision://resnet18
530
+
531
+ backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]):
532
+ PretrainedInit: load from torchvision://resnet18
533
+
534
+ backbone.layer4.0.bn1.weight - torch.Size([512]):
535
+ PretrainedInit: load from torchvision://resnet18
536
+
537
+ backbone.layer4.0.bn1.bias - torch.Size([512]):
538
+ PretrainedInit: load from torchvision://resnet18
539
+
540
+ backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
541
+ PretrainedInit: load from torchvision://resnet18
542
+
543
+ backbone.layer4.0.bn2.weight - torch.Size([512]):
544
+ PretrainedInit: load from torchvision://resnet18
545
+
546
+ backbone.layer4.0.bn2.bias - torch.Size([512]):
547
+ PretrainedInit: load from torchvision://resnet18
548
+
549
+ backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
550
+ PretrainedInit: load from torchvision://resnet18
551
+
552
+ backbone.layer4.0.downsample.1.weight - torch.Size([512]):
553
+ PretrainedInit: load from torchvision://resnet18
554
+
555
+ backbone.layer4.0.downsample.1.bias - torch.Size([512]):
556
+ PretrainedInit: load from torchvision://resnet18
557
+
558
+ backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]):
559
+ PretrainedInit: load from torchvision://resnet18
560
+
561
+ backbone.layer4.1.bn1.weight - torch.Size([512]):
562
+ PretrainedInit: load from torchvision://resnet18
563
+
564
+ backbone.layer4.1.bn1.bias - torch.Size([512]):
565
+ PretrainedInit: load from torchvision://resnet18
566
+
567
+ backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
568
+ PretrainedInit: load from torchvision://resnet18
569
+
570
+ backbone.layer4.1.bn2.weight - torch.Size([512]):
571
+ PretrainedInit: load from torchvision://resnet18
572
+
573
+ backbone.layer4.1.bn2.bias - torch.Size([512]):
574
+ PretrainedInit: load from torchvision://resnet18
575
+
576
+ neck.lateral_convs.0.conv.weight - torch.Size([256, 64, 1, 1]):
577
+ Initialized by user-defined `init_weights` in ConvModule
578
+
579
+ neck.lateral_convs.1.conv.weight - torch.Size([256, 128, 1, 1]):
580
+ Initialized by user-defined `init_weights` in ConvModule
581
+
582
+ neck.lateral_convs.2.conv.weight - torch.Size([256, 256, 1, 1]):
583
+ Initialized by user-defined `init_weights` in ConvModule
584
+
585
+ neck.lateral_convs.3.conv.weight - torch.Size([256, 512, 1, 1]):
586
+ Initialized by user-defined `init_weights` in ConvModule
587
+
588
+ neck.smooth_convs.0.conv.weight - torch.Size([64, 256, 3, 3]):
589
+ Initialized by user-defined `init_weights` in ConvModule
590
+
591
+ neck.smooth_convs.1.conv.weight - torch.Size([64, 256, 3, 3]):
592
+ Initialized by user-defined `init_weights` in ConvModule
593
+
594
+ neck.smooth_convs.2.conv.weight - torch.Size([64, 256, 3, 3]):
595
+ Initialized by user-defined `init_weights` in ConvModule
596
+
597
+ neck.smooth_convs.3.conv.weight - torch.Size([64, 256, 3, 3]):
598
+ Initialized by user-defined `init_weights` in ConvModule
599
+
600
+ det_head.binarize.0.weight - torch.Size([64, 256, 3, 3]):
601
+ The value is the same before and after calling `init_weights` of DBNet
602
+
603
+ det_head.binarize.1.weight - torch.Size([64]):
604
+ The value is the same before and after calling `init_weights` of DBNet
605
+
606
+ det_head.binarize.1.bias - torch.Size([64]):
607
+ The value is the same before and after calling `init_weights` of DBNet
608
+
609
+ det_head.binarize.3.weight - torch.Size([64, 64, 2, 2]):
610
+ The value is the same before and after calling `init_weights` of DBNet
611
+
612
+ det_head.binarize.3.bias - torch.Size([64]):
613
+ The value is the same before and after calling `init_weights` of DBNet
614
+
615
+ det_head.binarize.4.weight - torch.Size([64]):
616
+ The value is the same before and after calling `init_weights` of DBNet
617
+
618
+ det_head.binarize.4.bias - torch.Size([64]):
619
+ The value is the same before and after calling `init_weights` of DBNet
620
+
621
+ det_head.binarize.6.weight - torch.Size([64, 1, 2, 2]):
622
+ The value is the same before and after calling `init_weights` of DBNet
623
+
624
+ det_head.binarize.6.bias - torch.Size([1]):
625
+ The value is the same before and after calling `init_weights` of DBNet
626
+
627
+ det_head.threshold.0.weight - torch.Size([64, 256, 3, 3]):
628
+ The value is the same before and after calling `init_weights` of DBNet
629
+
630
+ det_head.threshold.1.weight - torch.Size([64]):
631
+ The value is the same before and after calling `init_weights` of DBNet
632
+
633
+ det_head.threshold.1.bias - torch.Size([64]):
634
+ The value is the same before and after calling `init_weights` of DBNet
635
+
636
+ det_head.threshold.3.weight - torch.Size([64, 64, 2, 2]):
637
+ The value is the same before and after calling `init_weights` of DBNet
638
+
639
+ det_head.threshold.3.bias - torch.Size([64]):
640
+ The value is the same before and after calling `init_weights` of DBNet
641
+
642
+ det_head.threshold.4.weight - torch.Size([64]):
643
+ The value is the same before and after calling `init_weights` of DBNet
644
+
645
+ det_head.threshold.4.bias - torch.Size([64]):
646
+ The value is the same before and after calling `init_weights` of DBNet
647
+
648
+ det_head.threshold.6.weight - torch.Size([64, 1, 2, 2]):
649
+ The value is the same before and after calling `init_weights` of DBNet
650
+
651
+ det_head.threshold.6.bias - torch.Size([1]):
652
+ The value is the same before and after calling `init_weights` of DBNet
653
+ 2023/02/24 05:13:40 - mmengine - INFO - Checkpoints will be saved to /content/mmocr/work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015.
654
+ 2023/02/24 05:16:48 - mmengine - INFO - Epoch(train) [1][ 5/22] lr: 7.0000e-03 eta: 11 days, 10:56:37 time: 37.4994 data_time: 13.3666 memory: 12058 loss: 10.5798 loss_prob: 7.3334 loss_thr: 2.3504 loss_db: 0.8960
655
+ 2023/02/24 05:17:25 - mmengine - INFO - Epoch(train) [1][10/22] lr: 7.0000e-03 eta: 6 days, 20:37:40 time: 22.4578 data_time: 6.7581 memory: 6713 loss: 8.0422 loss_prob: 5.2998 loss_thr: 1.8354 loss_db: 0.9071
656
+ 2023/02/24 05:17:49 - mmengine - INFO - Epoch(train) [1][15/22] lr: 7.0000e-03 eta: 5 days, 1:36:06 time: 6.1375 data_time: 0.0814 memory: 6713 loss: 5.2709 loss_prob: 3.0675 loss_thr: 1.2472 loss_db: 0.9562
657
+ 2023/02/24 05:18:13 - mmengine - INFO - Epoch(train) [1][20/22] lr: 7.0000e-03 eta: 4 days, 3:52:43 time: 4.8026 data_time: 0.0312 memory: 6713 loss: 4.9844 loss_prob: 2.8490 loss_thr: 1.1389 loss_db: 0.9965
658
+ 2023/02/24 05:18:25 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
659
+ 2023/02/24 05:21:34 - mmengine - INFO - Epoch(train) [2][ 5/22] lr: 6.9947e-03 eta: 5 days, 8:31:25 time: 21.5618 data_time: 7.1003 memory: 11447 loss: 4.8425 loss_prob: 2.8106 loss_thr: 1.0607 loss_db: 0.9712
660
+ 2023/02/24 05:22:09 - mmengine - INFO - Epoch(train) [2][10/22] lr: 6.9947e-03 eta: 4 days, 20:24:29 time: 22.4338 data_time: 7.1646 memory: 6712 loss: 4.7001 loss_prob: 2.7874 loss_thr: 1.1015 loss_db: 0.8112
661
+ 2023/02/24 05:22:33 - mmengine - INFO - Epoch(train) [2][15/22] lr: 6.9947e-03 eta: 4 days, 9:30:51 time: 5.9429 data_time: 0.0877 memory: 6712 loss: 4.4307 loss_prob: 2.7478 loss_thr: 1.1405 loss_db: 0.5424
662
+ 2023/02/24 05:22:56 - mmengine - INFO - Epoch(train) [2][20/22] lr: 6.9947e-03 eta: 4 days, 0:51:26 time: 4.7033 data_time: 0.0489 memory: 6712 loss: 4.1205 loss_prob: 2.6747 loss_thr: 1.0579 loss_db: 0.3879
663
+ 2023/02/24 05:23:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
664
+ 2023/02/24 05:25:58 - mmengine - INFO - Epoch(train) [3][ 5/22] lr: 6.9895e-03 eta: 4 days, 14:13:27 time: 19.7292 data_time: 6.3200 memory: 6712 loss: 3.7028 loss_prob: 2.4246 loss_thr: 0.9721 loss_db: 0.3061
665
+ 2023/02/24 05:26:33 - mmengine - INFO - Epoch(train) [3][10/22] lr: 6.9895e-03 eta: 4 days, 8:44:41 time: 20.8299 data_time: 6.3501 memory: 6712 loss: 3.4052 loss_prob: 2.1909 loss_thr: 0.9435 loss_db: 0.2709
666
+ 2023/02/24 05:26:53 - mmengine - INFO - Epoch(train) [3][15/22] lr: 6.9895e-03 eta: 4 days, 2:14:03 time: 5.4242 data_time: 0.0758 memory: 6712 loss: 3.1914 loss_prob: 2.0126 loss_thr: 0.9125 loss_db: 0.2664
667
+ 2023/02/24 05:27:15 - mmengine - INFO - Epoch(train) [3][20/22] lr: 6.9895e-03 eta: 3 days, 21:04:03 time: 4.1317 data_time: 0.0486 memory: 6712 loss: 2.9899 loss_prob: 1.8336 loss_thr: 0.8950 loss_db: 0.2613
668
+ 2023/02/24 05:27:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
669
+ 2023/02/24 05:30:21 - mmengine - INFO - Epoch(train) [4][ 5/22] lr: 6.9842e-03 eta: 4 days, 7:06:23 time: 19.9728 data_time: 6.5625 memory: 6712 loss: 2.7135 loss_prob: 1.6040 loss_thr: 0.8757 loss_db: 0.2338
670
+ 2023/02/24 05:30:55 - mmengine - INFO - Epoch(train) [4][10/22] lr: 6.9842e-03 eta: 4 days, 3:31:24 time: 21.1335 data_time: 6.5916 memory: 6712 loss: 2.5669 loss_prob: 1.4807 loss_thr: 0.8647 loss_db: 0.2215
671
+ 2023/02/24 05:31:16 - mmengine - INFO - Epoch(train) [4][15/22] lr: 6.9842e-03 eta: 3 days, 23:16:49 time: 5.4703 data_time: 0.0655 memory: 6712 loss: 2.5318 loss_prob: 1.4490 loss_thr: 0.8641 loss_db: 0.2187
672
+ 2023/02/24 05:31:37 - mmengine - INFO - Epoch(train) [4][20/22] lr: 6.9842e-03 eta: 3 days, 19:28:30 time: 4.1855 data_time: 0.0463 memory: 6712 loss: 2.4536 loss_prob: 1.3779 loss_thr: 0.8595 loss_db: 0.2161
673
+ 2023/02/24 05:31:43 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
674
+ 2023/02/24 05:34:41 - mmengine - INFO - Epoch(train) [5][ 5/22] lr: 6.9790e-03 eta: 4 days, 3:03:02 time: 19.6819 data_time: 6.5648 memory: 6712 loss: 2.2837 loss_prob: 1.2531 loss_thr: 0.8280 loss_db: 0.2027
675
+ 2023/02/24 05:35:13 - mmengine - INFO - Epoch(train) [5][10/22] lr: 6.9790e-03 eta: 4 days, 0:23:14 time: 20.9855 data_time: 6.6279 memory: 6712 loss: 2.2122 loss_prob: 1.1990 loss_thr: 0.8168 loss_db: 0.1964
676
+ 2023/02/24 05:35:36 - mmengine - INFO - Epoch(train) [5][15/22] lr: 6.9790e-03 eta: 3 days, 21:16:29 time: 5.4636 data_time: 0.0946 memory: 6712 loss: 2.1482 loss_prob: 1.1455 loss_thr: 0.8120 loss_db: 0.1906
677
+ 2023/02/24 05:35:57 - mmengine - INFO - Epoch(train) [5][20/22] lr: 6.9790e-03 eta: 3 days, 18:24:00 time: 4.3929 data_time: 0.0363 memory: 6712 loss: 2.2215 loss_prob: 1.2052 loss_thr: 0.8195 loss_db: 0.1968
678
+ 2023/02/24 05:36:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
679
+ 2023/02/24 05:39:01 - mmengine - INFO - Epoch(train) [6][ 5/22] lr: 6.9737e-03 eta: 4 days, 0:33:26 time: 19.8343 data_time: 6.6865 memory: 6712 loss: 2.2092 loss_prob: 1.1873 loss_thr: 0.8270 loss_db: 0.1949
680
+ 2023/02/24 05:39:35 - mmengine - INFO - Epoch(train) [6][10/22] lr: 6.9737e-03 eta: 3 days, 22:34:41 time: 21.0220 data_time: 6.7316 memory: 6712 loss: 2.0882 loss_prob: 1.0934 loss_thr: 0.8093 loss_db: 0.1856
681
+ 2023/02/24 05:39:55 - mmengine - INFO - Epoch(train) [6][15/22] lr: 6.9737e-03 eta: 3 days, 19:56:56 time: 5.3949 data_time: 0.0639 memory: 6712 loss: 2.0953 loss_prob: 1.1014 loss_thr: 0.8072 loss_db: 0.1867
682
+ 2023/02/24 05:40:15 - mmengine - INFO - Epoch(train) [6][20/22] lr: 6.9737e-03 eta: 3 days, 17:30:13 time: 3.9802 data_time: 0.0307 memory: 6712 loss: 2.1803 loss_prob: 1.1807 loss_thr: 0.8064 loss_db: 0.1932
683
+ 2023/02/24 05:40:24 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
684
+ 2023/02/24 05:43:18 - mmengine - INFO - Epoch(train) [7][ 5/22] lr: 6.9685e-03 eta: 3 days, 22:38:09 time: 19.3378 data_time: 6.0656 memory: 6712 loss: 2.1125 loss_prob: 1.1454 loss_thr: 0.7801 loss_db: 0.1870
685
+ 2023/02/24 05:43:52 - mmengine - INFO - Epoch(train) [7][10/22] lr: 6.9685e-03 eta: 3 days, 21:03:26 time: 20.8409 data_time: 6.1127 memory: 6712 loss: 2.1082 loss_prob: 1.1444 loss_thr: 0.7752 loss_db: 0.1886
686
+ 2023/02/24 05:44:14 - mmengine - INFO - Epoch(train) [7][15/22] lr: 6.9685e-03 eta: 3 days, 18:57:55 time: 5.6460 data_time: 0.0896 memory: 6712 loss: 2.0828 loss_prob: 1.1309 loss_thr: 0.7652 loss_db: 0.1867
687
+ 2023/02/24 05:44:35 - mmengine - INFO - Epoch(train) [7][20/22] lr: 6.9685e-03 eta: 3 days, 16:56:45 time: 4.2613 data_time: 0.0588 memory: 6712 loss: 1.9454 loss_prob: 1.0347 loss_thr: 0.7355 loss_db: 0.1752
688
+ 2023/02/24 05:44:42 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
689
+ 2023/02/24 05:47:42 - mmengine - INFO - Epoch(train) [8][ 5/22] lr: 6.9632e-03 eta: 3 days, 21:35:37 time: 20.0738 data_time: 7.0659 memory: 6712 loss: 1.9103 loss_prob: 1.0182 loss_thr: 0.7198 loss_db: 0.1723
690
+ 2023/02/24 05:48:18 - mmengine - INFO - Epoch(train) [8][10/22] lr: 6.9632e-03 eta: 3 days, 20:19:25 time: 21.6464 data_time: 7.0947 memory: 6712 loss: 1.9593 loss_prob: 1.0665 loss_thr: 0.7176 loss_db: 0.1751
691
+ 2023/02/24 05:48:41 - mmengine - INFO - Epoch(train) [8][15/22] lr: 6.9632e-03 eta: 3 days, 18:33:12 time: 5.8713 data_time: 0.0769 memory: 6712 loss: 1.9544 loss_prob: 1.0733 loss_thr: 0.7049 loss_db: 0.1762
692
+ 2023/02/24 05:49:01 - mmengine - INFO - Epoch(train) [8][20/22] lr: 6.9632e-03 eta: 3 days, 16:48:01 time: 4.3373 data_time: 0.0467 memory: 6712 loss: 1.8306 loss_prob: 0.9863 loss_thr: 0.6770 loss_db: 0.1673
693
+ 2023/02/24 05:49:08 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
694
+ 2023/02/24 05:52:08 - mmengine - INFO - Epoch(train) [9][ 5/22] lr: 6.9580e-03 eta: 3 days, 20:51:50 time: 20.0004 data_time: 6.3228 memory: 6712 loss: 1.9089 loss_prob: 1.0586 loss_thr: 0.6772 loss_db: 0.1731
695
+ 2023/02/24 05:52:41 - mmengine - INFO - Epoch(train) [9][10/22] lr: 6.9580e-03 eta: 3 days, 19:38:00 time: 21.3337 data_time: 6.3790 memory: 6712 loss: 1.8955 loss_prob: 1.0480 loss_thr: 0.6761 loss_db: 0.1714
696
+ 2023/02/24 05:53:02 - mmengine - INFO - Epoch(train) [9][15/22] lr: 6.9580e-03 eta: 3 days, 17:59:55 time: 5.3263 data_time: 0.0722 memory: 6712 loss: 1.7788 loss_prob: 0.9520 loss_thr: 0.6654 loss_db: 0.1614
697
+ 2023/02/24 05:53:21 - mmengine - INFO - Epoch(train) [9][20/22] lr: 6.9580e-03 eta: 3 days, 16:25:34 time: 4.0420 data_time: 0.0361 memory: 6712 loss: 1.8003 loss_prob: 0.9682 loss_thr: 0.6678 loss_db: 0.1643
698
+ 2023/02/24 05:53:31 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
699
+ 2023/02/24 05:56:27 - mmengine - INFO - Epoch(train) [10][ 5/22] lr: 6.9527e-03 eta: 3 days, 20:00:04 time: 19.6905 data_time: 6.3250 memory: 6712 loss: 1.8357 loss_prob: 0.9859 loss_thr: 0.6834 loss_db: 0.1663
700
+ 2023/02/24 05:57:04 - mmengine - INFO - Epoch(train) [10][10/22] lr: 6.9527e-03 eta: 3 days, 19:04:40 time: 21.3082 data_time: 6.3498 memory: 6712 loss: 1.8376 loss_prob: 0.9889 loss_thr: 0.6809 loss_db: 0.1677
701
+ 2023/02/24 05:57:27 - mmengine - INFO - Epoch(train) [10][15/22] lr: 6.9527e-03 eta: 3 days, 17:43:00 time: 6.0559 data_time: 0.0570 memory: 6712 loss: 1.7998 loss_prob: 0.9688 loss_thr: 0.6660 loss_db: 0.1651
702
+ 2023/02/24 05:57:48 - mmengine - INFO - Epoch(train) [10][20/22] lr: 6.9527e-03 eta: 3 days, 16:20:24 time: 4.4162 data_time: 0.0306 memory: 6712 loss: 1.8812 loss_prob: 1.0357 loss_thr: 0.6779 loss_db: 0.1676
703
+ 2023/02/24 05:57:55 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
704
+ 2023/02/24 06:01:01 - mmengine - INFO - Epoch(train) [11][ 5/22] lr: 6.9474e-03 eta: 3 days, 19:46:57 time: 20.5701 data_time: 7.2858 memory: 6712 loss: 1.8385 loss_prob: 1.0164 loss_thr: 0.6580 loss_db: 0.1641
705
+ 2023/02/24 06:01:42 - mmengine - INFO - Epoch(train) [11][10/22] lr: 6.9474e-03 eta: 3 days, 19:04:25 time: 22.6877 data_time: 7.3177 memory: 6712 loss: 1.7372 loss_prob: 0.9383 loss_thr: 0.6403 loss_db: 0.1586
706
+ 2023/02/24 06:02:04 - mmengine - INFO - Epoch(train) [11][15/22] lr: 6.9474e-03 eta: 3 days, 17:48:05 time: 6.3309 data_time: 0.0664 memory: 6712 loss: 1.8261 loss_prob: 1.0116 loss_thr: 0.6501 loss_db: 0.1644
707
+ 2023/02/24 06:02:27 - mmengine - INFO - Epoch(train) [11][20/22] lr: 6.9474e-03 eta: 3 days, 16:36:23 time: 4.4944 data_time: 0.0463 memory: 6712 loss: 1.8030 loss_prob: 0.9974 loss_thr: 0.6439 loss_db: 0.1618
708
+ 2023/02/24 06:02:35 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
709
+ 2023/02/24 06:05:43 - mmengine - INFO - Epoch(train) [12][ 5/22] lr: 6.9422e-03 eta: 3 days, 19:50:54 time: 21.0802 data_time: 6.7792 memory: 6712 loss: 1.7311 loss_prob: 0.9384 loss_thr: 0.6339 loss_db: 0.1588
710
+ 2023/02/24 06:06:16 - mmengine - INFO - Epoch(train) [12][10/22] lr: 6.9422e-03 eta: 3 days, 18:57:51 time: 22.1269 data_time: 6.7959 memory: 6712 loss: 1.7188 loss_prob: 0.9327 loss_thr: 0.6281 loss_db: 0.1580
711
+ 2023/02/24 06:06:38 - mmengine - INFO - Epoch(train) [12][15/22] lr: 6.9422e-03 eta: 3 days, 17:47:34 time: 5.4922 data_time: 0.0768 memory: 6712 loss: 1.7922 loss_prob: 0.9895 loss_thr: 0.6431 loss_db: 0.1596
712
+ 2023/02/24 06:06:59 - mmengine - INFO - Epoch(train) [12][20/22] lr: 6.9422e-03 eta: 3 days, 16:38:54 time: 4.2930 data_time: 0.0734 memory: 6712 loss: 1.8091 loss_prob: 1.0073 loss_thr: 0.6390 loss_db: 0.1628
713
+ 2023/02/24 06:07:07 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
714
+ 2023/02/24 06:10:14 - mmengine - INFO - Epoch(train) [13][ 5/22] lr: 6.9369e-03 eta: 3 days, 19:34:46 time: 20.8475 data_time: 6.4862 memory: 6712 loss: 1.7225 loss_prob: 0.9462 loss_thr: 0.6158 loss_db: 0.1605
715
+ 2023/02/24 06:10:45 - mmengine - INFO - Epoch(train) [13][10/22] lr: 6.9369e-03 eta: 3 days, 18:42:55 time: 21.8411 data_time: 6.5244 memory: 6712 loss: 1.6861 loss_prob: 0.9208 loss_thr: 0.6085 loss_db: 0.1568
716
+ 2023/02/24 06:11:08 - mmengine - INFO - Epoch(train) [13][15/22] lr: 6.9369e-03 eta: 3 days, 17:39:18 time: 5.3518 data_time: 0.0755 memory: 6712 loss: 1.6869 loss_prob: 0.9212 loss_thr: 0.6091 loss_db: 0.1566
717
+ 2023/02/24 06:11:29 - mmengine - INFO - Epoch(train) [13][20/22] lr: 6.9369e-03 eta: 3 days, 16:36:44 time: 4.4030 data_time: 0.0427 memory: 6712 loss: 1.6707 loss_prob: 0.9171 loss_thr: 0.5988 loss_db: 0.1549
718
+ 2023/02/24 06:11:39 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
719
+ 2023/02/24 06:14:33 - mmengine - INFO - Epoch(train) [14][ 5/22] lr: 6.9317e-03 eta: 3 days, 19:01:21 time: 19.7550 data_time: 6.6183 memory: 6712 loss: 1.7619 loss_prob: 1.0020 loss_thr: 0.6010 loss_db: 0.1589
720
+ 2023/02/24 06:15:10 - mmengine - INFO - Epoch(train) [14][10/22] lr: 6.9317e-03 eta: 3 days, 18:23:36 time: 21.1018 data_time: 6.6633 memory: 6712 loss: 1.7161 loss_prob: 0.9654 loss_thr: 0.5944 loss_db: 0.1563
721
+ 2023/02/24 06:15:32 - mmengine - INFO - Epoch(train) [14][15/22] lr: 6.9317e-03 eta: 3 days, 17:22:58 time: 5.8873 data_time: 0.0648 memory: 6712 loss: 1.7192 loss_prob: 0.9679 loss_thr: 0.5954 loss_db: 0.1559
722
+ 2023/02/24 06:15:54 - mmengine - INFO - Epoch(train) [14][20/22] lr: 6.9317e-03 eta: 3 days, 16:25:59 time: 4.3364 data_time: 0.0274 memory: 6712 loss: 1.6298 loss_prob: 0.8869 loss_thr: 0.5926 loss_db: 0.1503
723
+ 2023/02/24 06:16:02 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
724
+ 2023/02/24 06:19:00 - mmengine - INFO - Epoch(train) [15][ 5/22] lr: 6.9264e-03 eta: 3 days, 18:44:04 time: 19.8166 data_time: 6.2719 memory: 6712 loss: 1.6233 loss_prob: 0.8843 loss_thr: 0.5895 loss_db: 0.1495
725
+ 2023/02/24 06:19:35 - mmengine - INFO - Epoch(train) [15][10/22] lr: 6.9264e-03 eta: 3 days, 18:05:44 time: 21.3018 data_time: 6.3262 memory: 6712 loss: 1.6084 loss_prob: 0.8760 loss_thr: 0.5845 loss_db: 0.1478
726
+ 2023/02/24 06:19:56 - mmengine - INFO - Epoch(train) [15][15/22] lr: 6.9264e-03 eta: 3 days, 17:09:18 time: 5.6332 data_time: 0.0798 memory: 6712 loss: 1.5740 loss_prob: 0.8612 loss_thr: 0.5668 loss_db: 0.1460
727
+ 2023/02/24 06:20:17 - mmengine - INFO - Epoch(train) [15][20/22] lr: 6.9264e-03 eta: 3 days, 16:14:55 time: 4.2267 data_time: 0.0394 memory: 6712 loss: 1.6627 loss_prob: 0.9368 loss_thr: 0.5743 loss_db: 0.1516
728
+ 2023/02/24 06:20:27 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
729
+ 2023/02/24 06:23:29 - mmengine - INFO - Epoch(train) [16][ 5/22] lr: 6.9211e-03 eta: 3 days, 18:31:35 time: 20.4682 data_time: 6.4376 memory: 6712 loss: 1.6751 loss_prob: 0.9439 loss_thr: 0.5791 loss_db: 0.1521
730
+ 2023/02/24 06:24:03 - mmengine - INFO - Epoch(train) [16][10/22] lr: 6.9211e-03 eta: 3 days, 17:53:41 time: 21.5603 data_time: 6.4834 memory: 6712 loss: 1.5881 loss_prob: 0.8699 loss_thr: 0.5714 loss_db: 0.1468
731
+ 2023/02/24 06:24:24 - mmengine - INFO - Epoch(train) [16][15/22] lr: 6.9211e-03 eta: 3 days, 17:01:54 time: 5.5439 data_time: 0.0674 memory: 6712 loss: 1.5751 loss_prob: 0.8581 loss_thr: 0.5713 loss_db: 0.1457
732
+ 2023/02/24 06:24:46 - mmengine - INFO - Epoch(train) [16][20/22] lr: 6.9211e-03 eta: 3 days, 16:11:19 time: 4.3338 data_time: 0.0365 memory: 6712 loss: 1.6895 loss_prob: 0.9474 loss_thr: 0.5892 loss_db: 0.1528
733
+ 2023/02/24 06:24:54 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
734
+ 2023/02/24 06:27:53 - mmengine - INFO - Epoch(train) [17][ 5/22] lr: 6.9159e-03 eta: 3 days, 18:13:54 time: 20.1179 data_time: 7.1602 memory: 6712 loss: 1.5890 loss_prob: 0.8658 loss_thr: 0.5758 loss_db: 0.1473
735
+ 2023/02/24 06:28:29 - mmengine - INFO - Epoch(train) [17][10/22] lr: 6.9159e-03 eta: 3 days, 17:40:34 time: 21.5151 data_time: 7.1956 memory: 6712 loss: 1.5827 loss_prob: 0.8728 loss_thr: 0.5623 loss_db: 0.1476
736
+ 2023/02/24 06:28:52 - mmengine - INFO - Epoch(train) [17][15/22] lr: 6.9159e-03 eta: 3 days, 16:53:08 time: 5.8176 data_time: 0.0500 memory: 6712 loss: 1.5498 loss_prob: 0.8583 loss_thr: 0.5468 loss_db: 0.1447
737
+ 2023/02/24 06:29:14 - mmengine - INFO - Epoch(train) [17][20/22] lr: 6.9159e-03 eta: 3 days, 16:06:35 time: 4.5159 data_time: 0.0371 memory: 6712 loss: 1.5092 loss_prob: 0.8323 loss_thr: 0.5363 loss_db: 0.1406
738
+ 2023/02/24 06:29:21 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
739
+ 2023/02/24 06:32:11 - mmengine - INFO - Epoch(train) [18][ 5/22] lr: 6.9106e-03 eta: 3 days, 17:49:46 time: 19.0947 data_time: 6.1514 memory: 6712 loss: 1.6499 loss_prob: 0.9514 loss_thr: 0.5495 loss_db: 0.1489
740
+ 2023/02/24 06:32:41 - mmengine - INFO - Epoch(train) [18][10/22] lr: 6.9106e-03 eta: 3 days, 17:13:04 time: 19.9988 data_time: 6.1911 memory: 6712 loss: 1.5199 loss_prob: 0.8403 loss_thr: 0.5375 loss_db: 0.1421
741
+ 2023/02/24 06:33:02 - mmengine - INFO - Epoch(train) [18][15/22] lr: 6.9106e-03 eta: 3 days, 16:26:56 time: 5.1812 data_time: 0.0669 memory: 6712 loss: 1.6338 loss_prob: 0.9296 loss_thr: 0.5540 loss_db: 0.1502
742
+ 2023/02/24 06:33:23 - mmengine - INFO - Epoch(train) [18][20/22] lr: 6.9106e-03 eta: 3 days, 15:41:20 time: 4.1944 data_time: 0.0443 memory: 6712 loss: 1.6014 loss_prob: 0.9109 loss_thr: 0.5433 loss_db: 0.1472
743
+ 2023/02/24 06:33:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
744
+ 2023/02/24 06:36:13 - mmengine - INFO - Epoch(train) [19][ 5/22] lr: 6.9054e-03 eta: 3 days, 17:11:46 time: 18.3289 data_time: 6.0725 memory: 6712 loss: 1.5865 loss_prob: 0.9040 loss_thr: 0.5374 loss_db: 0.1451
745
+ 2023/02/24 06:36:44 - mmengine - INFO - Epoch(train) [19][10/22] lr: 6.9054e-03 eta: 3 days, 16:38:02 time: 19.4111 data_time: 6.1041 memory: 6712 loss: 1.5683 loss_prob: 0.8961 loss_thr: 0.5286 loss_db: 0.1436
746
+ 2023/02/24 06:37:03 - mmengine - INFO - Epoch(train) [19][15/22] lr: 6.9054e-03 eta: 3 days, 15:52:19 time: 5.0075 data_time: 0.0461 memory: 6712 loss: 1.4666 loss_prob: 0.8143 loss_thr: 0.5145 loss_db: 0.1378
747
+ 2023/02/24 06:37:22 - mmengine - INFO - Epoch(train) [19][20/22] lr: 6.9054e-03 eta: 3 days, 15:07:51 time: 3.8092 data_time: 0.0239 memory: 6712 loss: 1.4776 loss_prob: 0.8202 loss_thr: 0.5185 loss_db: 0.1389
748
+ 2023/02/24 06:37:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
749
+ 2023/02/24 06:40:10 - mmengine - INFO - Epoch(train) [20][ 5/22] lr: 6.9001e-03 eta: 3 days, 16:31:37 time: 18.0048 data_time: 5.7458 memory: 6712 loss: 1.5888 loss_prob: 0.9128 loss_thr: 0.5328 loss_db: 0.1432
750
+ 2023/02/24 06:40:37 - mmengine - INFO - Epoch(train) [20][10/22] lr: 6.9001e-03 eta: 3 days, 15:56:20 time: 18.7845 data_time: 5.7862 memory: 6712 loss: 1.6013 loss_prob: 0.9205 loss_thr: 0.5363 loss_db: 0.1445
751
+ 2023/02/24 06:40:58 - mmengine - INFO - Epoch(train) [20][15/22] lr: 6.9001e-03 eta: 3 days, 15:14:41 time: 4.7755 data_time: 0.0685 memory: 6712 loss: 1.4801 loss_prob: 0.8185 loss_thr: 0.5228 loss_db: 0.1389
752
+ 2023/02/24 06:41:17 - mmengine - INFO - Epoch(train) [20][20/22] lr: 6.9001e-03 eta: 3 days, 14:32:56 time: 3.9535 data_time: 0.0450 memory: 6712 loss: 1.4580 loss_prob: 0.8092 loss_thr: 0.5116 loss_db: 0.1372
753
+ 2023/02/24 06:41:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
754
+ 2023/02/24 06:41:23 - mmengine - INFO - Saving checkpoint at 20 epochs
755
+ 2023/02/24 06:43:59 - mmengine - INFO - Epoch(val) [20][ 5/88] eta: 0:42:55 time: 31.0259 data_time: 0.0756 memory: 8651
model/config.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ file_client_args = dict(backend='disk')
2
+ model = dict(
3
+ type='DBNet',
4
+ backbone=dict(
5
+ type='mmdet.ResNet',
6
+ depth=18,
7
+ num_stages=4,
8
+ out_indices=(0, 1, 2, 3),
9
+ frozen_stages=-1,
10
+ norm_cfg=dict(type='BN', requires_grad=True),
11
+ init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
12
+ norm_eval=False,
13
+ style='caffe'),
14
+ neck=dict(
15
+ type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
16
+ det_head=dict(
17
+ type='DBHead',
18
+ in_channels=256,
19
+ module_loss=dict(type='DBModuleLoss'),
20
+ postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
21
+ data_preprocessor=dict(
22
+ type='TextDetDataPreprocessor',
23
+ mean=[123.675, 116.28, 103.53],
24
+ std=[58.395, 57.12, 57.375],
25
+ bgr_to_rgb=True,
26
+ pad_size_divisor=32))
27
+ train_pipeline = [
28
+ dict(
29
+ type='LoadImageFromFile',
30
+ file_client_args=dict(backend='disk'),
31
+ color_type='color_ignore_orientation'),
32
+ dict(
33
+ type='LoadOCRAnnotations',
34
+ with_polygon=True,
35
+ with_bbox=True,
36
+ with_label=True),
37
+ dict(
38
+ type='TorchVisionWrapper',
39
+ op='ColorJitter',
40
+ brightness=0.12549019607843137,
41
+ saturation=0.5),
42
+ dict(
43
+ type='ImgAugWrapper',
44
+ args=[['Fliplr', 0.5], {
45
+ 'cls': 'Affine',
46
+ 'rotate': [-10, 10]
47
+ }, ['Resize', [0.5, 3.0]]]),
48
+ dict(type='RandomCrop', min_side_ratio=0.1),
49
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
50
+ dict(type='Pad', size=(640, 640)),
51
+ dict(
52
+ type='PackTextDetInputs',
53
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
54
+ ]
55
+ test_pipeline = [
56
+ dict(
57
+ type='LoadImageFromFile',
58
+ file_client_args=dict(backend='disk'),
59
+ color_type='color_ignore_orientation'),
60
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
61
+ dict(
62
+ type='LoadOCRAnnotations',
63
+ with_polygon=True,
64
+ with_bbox=True,
65
+ with_label=True),
66
+ dict(
67
+ type='PackTextDetInputs',
68
+ meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
69
+ ]
70
+ icdar2015_textdet_data_root = 'data/det/textdet-thvote'
71
+ icdar2015_textdet_train = dict(
72
+ type='OCRDataset',
73
+ data_root='data/det/textdet-thvote',
74
+ ann_file='textdet_train.json',
75
+ data_prefix=dict(img_path='imgs/'),
76
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
77
+ pipeline=[
78
+ dict(
79
+ type='LoadImageFromFile',
80
+ file_client_args=dict(backend='disk'),
81
+ color_type='color_ignore_orientation'),
82
+ dict(
83
+ type='LoadOCRAnnotations',
84
+ with_polygon=True,
85
+ with_bbox=True,
86
+ with_label=True),
87
+ dict(
88
+ type='TorchVisionWrapper',
89
+ op='ColorJitter',
90
+ brightness=0.12549019607843137,
91
+ saturation=0.5),
92
+ dict(
93
+ type='ImgAugWrapper',
94
+ args=[['Fliplr', 0.5], {
95
+ 'cls': 'Affine',
96
+ 'rotate': [-10, 10]
97
+ }, ['Resize', [0.5, 3.0]]]),
98
+ dict(type='RandomCrop', min_side_ratio=0.1),
99
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
100
+ dict(type='Pad', size=(640, 640)),
101
+ dict(
102
+ type='PackTextDetInputs',
103
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
104
+ ])
105
+ icdar2015_textdet_test = dict(
106
+ type='OCRDataset',
107
+ data_root='data/det/textdet-thvote',
108
+ ann_file='textdet_test.json',
109
+ data_prefix=dict(img_path='imgs/'),
110
+ test_mode=True,
111
+ pipeline=[
112
+ dict(
113
+ type='LoadImageFromFile',
114
+ file_client_args=dict(backend='disk'),
115
+ color_type='color_ignore_orientation'),
116
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
117
+ dict(
118
+ type='LoadOCRAnnotations',
119
+ with_polygon=True,
120
+ with_bbox=True,
121
+ with_label=True),
122
+ dict(
123
+ type='PackTextDetInputs',
124
+ meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
125
+ ])
126
+ default_scope = 'mmocr'
127
+ env_cfg = dict(
128
+ cudnn_benchmark=True,
129
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
130
+ dist_cfg=dict(backend='nccl'))
131
+ randomness = dict(seed=None)
132
+ default_hooks = dict(
133
+ timer=dict(type='IterTimerHook'),
134
+ logger=dict(type='LoggerHook', interval=5),
135
+ param_scheduler=dict(type='ParamSchedulerHook'),
136
+ checkpoint=dict(type='CheckpointHook', interval=20),
137
+ sampler_seed=dict(type='DistSamplerSeedHook'),
138
+ sync_buffer=dict(type='SyncBuffersHook'),
139
+ visualization=dict(
140
+ type='VisualizationHook',
141
+ interval=1,
142
+ enable=False,
143
+ show=False,
144
+ draw_gt=False,
145
+ draw_pred=False))
146
+ log_level = 'INFO'
147
+ log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
148
+ load_from = None
149
+ resume = False
150
+ val_evaluator = dict(type='HmeanIOUMetric')
151
+ test_evaluator = dict(type='HmeanIOUMetric')
152
+ vis_backends = [dict(type='LocalVisBackend')]
153
+ visualizer = dict(
154
+ type='TextDetLocalVisualizer',
155
+ name='visualizer',
156
+ vis_backends=[dict(type='LocalVisBackend')])
157
+ optim_wrapper = dict(
158
+ type='OptimWrapper',
159
+ optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
160
+ train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
161
+ val_cfg = dict(type='ValLoop')
162
+ test_cfg = dict(type='TestLoop')
163
+ param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
164
+ train_dataloader = dict(
165
+ batch_size=16,
166
+ num_workers=8,
167
+ persistent_workers=True,
168
+ sampler=dict(type='DefaultSampler', shuffle=True),
169
+ dataset=dict(
170
+ type='OCRDataset',
171
+ data_root='data/det/textdet-thvote',
172
+ ann_file='textdet_train.json',
173
+ data_prefix=dict(img_path='imgs/'),
174
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
175
+ pipeline=[
176
+ dict(
177
+ type='LoadImageFromFile',
178
+ file_client_args=dict(backend='disk'),
179
+ color_type='color_ignore_orientation'),
180
+ dict(
181
+ type='LoadOCRAnnotations',
182
+ with_polygon=True,
183
+ with_bbox=True,
184
+ with_label=True),
185
+ dict(
186
+ type='TorchVisionWrapper',
187
+ op='ColorJitter',
188
+ brightness=0.12549019607843137,
189
+ saturation=0.5),
190
+ dict(
191
+ type='ImgAugWrapper',
192
+ args=[['Fliplr', 0.5], {
193
+ 'cls': 'Affine',
194
+ 'rotate': [-10, 10]
195
+ }, ['Resize', [0.5, 3.0]]]),
196
+ dict(type='RandomCrop', min_side_ratio=0.1),
197
+ dict(type='Resize', scale=(640, 640), keep_ratio=True),
198
+ dict(type='Pad', size=(640, 640)),
199
+ dict(
200
+ type='PackTextDetInputs',
201
+ meta_keys=('img_path', 'ori_shape', 'img_shape'))
202
+ ]))
203
+ val_dataloader = dict(
204
+ batch_size=1,
205
+ num_workers=4,
206
+ persistent_workers=True,
207
+ sampler=dict(type='DefaultSampler', shuffle=False),
208
+ dataset=dict(
209
+ type='OCRDataset',
210
+ data_root='data/det/textdet-thvote',
211
+ ann_file='textdet_test.json',
212
+ data_prefix=dict(img_path='imgs/'),
213
+ test_mode=True,
214
+ pipeline=[
215
+ dict(
216
+ type='LoadImageFromFile',
217
+ file_client_args=dict(backend='disk'),
218
+ color_type='color_ignore_orientation'),
219
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
220
+ dict(
221
+ type='LoadOCRAnnotations',
222
+ with_polygon=True,
223
+ with_bbox=True,
224
+ with_label=True),
225
+ dict(
226
+ type='PackTextDetInputs',
227
+ meta_keys=('img_path', 'ori_shape', 'img_shape',
228
+ 'scale_factor'))
229
+ ]))
230
+ test_dataloader = dict(
231
+ batch_size=1,
232
+ num_workers=4,
233
+ persistent_workers=True,
234
+ sampler=dict(type='DefaultSampler', shuffle=False),
235
+ dataset=dict(
236
+ type='OCRDataset',
237
+ data_root='data/det/textdet-thvote',
238
+ ann_file='textdet_test.json',
239
+ data_prefix=dict(img_path='imgs/'),
240
+ test_mode=True,
241
+ pipeline=[
242
+ dict(
243
+ type='LoadImageFromFile',
244
+ file_client_args=dict(backend='disk'),
245
+ color_type='color_ignore_orientation'),
246
+ dict(type='Resize', scale=(1333, 736), keep_ratio=True),
247
+ dict(
248
+ type='LoadOCRAnnotations',
249
+ with_polygon=True,
250
+ with_bbox=True,
251
+ with_label=True),
252
+ dict(
253
+ type='PackTextDetInputs',
254
+ meta_keys=('img_path', 'ori_shape', 'img_shape',
255
+ 'scale_factor'))
256
+ ]))
257
+ auto_scale_lr = dict(base_batch_size=16)
258
+ launcher = 'none'
259
+ work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
model/epoch_20.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d6272124c7fcedcdb64c2de3e82d1d6588f9f5f45abaa114048badaeb887a29
3
+ size 98924057
model/epoch_40.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c73dfa8e57af4ec4080e6b60d58e1d2d26d212ea93d3fcab0d9a23e7713c48e
3
+ size 98980313
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ torchvision
4
+ requests
5
+ openmim
6
+ mmdet>=3.0.0rc0
7
+ mmocr>=1.0.0rc0