Spaces:
Build error
Build error
File size: 992 Bytes
1c727d5 aa41622 0fc4b93 c3a10c9 48e6d08 aa41622 48e6d08 0fc4b93 3c11248 6ad06e7 3c11248 a73ee78 78be22c 2dfefac baaae8c 741d744 0fc4b93 baaae8c 0fc4b93 6ad06e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from mmocr.apis import MMOCRInferencer
from mmdet.apis import init_detector, inference_detector
import gradio as gr
import cv2
import sys
import torch
print('Loading model...')
device = 'gpu' if torch.cuda.is_available() else 'cpu'
ocr = MMOCRInferencer(
det='model/text-det/psenet.py',
det_weights='model/text-det/psenet.pth',
rec='model/text-recog/config.py',
rec_weights='model/text-recog/model.pth',
device=device)
def get_rec(points):
xs = []
ys = []
for ix, iv in enumerate(points):
if ix % 2:
ys.append(iv)
else:
xs.append(iv)
return (min(xs), min(ys)), (max(xs), max(ys))
def predict(image_input):
return ocr(image_input)
def run():
demo = gr.Interface(
fn=predict,
inputs=gr.components.Image(),
outputs=gr.JSON(),
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()
|