Spaces:
Running
Running
add sections
Browse files- dist/index.html +114 -0
- src/index.html +114 -0
dist/index.html
CHANGED
@@ -212,6 +212,120 @@
|
|
212 |
<p>Now that we nailed a few key concept and terms let’s get started by revisiting the basic training steps of an LLM!</p>
|
213 |
|
214 |
<h2>First Steps: Training on one GPU</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
</d-article>
|
217 |
|
|
|
212 |
<p>Now that we nailed a few key concept and terms let’s get started by revisiting the basic training steps of an LLM!</p>
|
213 |
|
214 |
<h2>First Steps: Training on one GPU</h2>
|
215 |
+
|
216 |
+
<h3>Memory usage in Transformers</h3>
|
217 |
+
|
218 |
+
<h4>Memory profiling a training step</h4>
|
219 |
+
|
220 |
+
<h4>Weights/grads/optimizer states memory</h4>
|
221 |
+
|
222 |
+
<h4>Activations memory</h4>
|
223 |
+
|
224 |
+
<h3>Activation recomputation</h3>
|
225 |
+
|
226 |
+
<h3>Gradient accumulation</h3>
|
227 |
+
|
228 |
+
<h2>Data Parallelism</h2>
|
229 |
+
|
230 |
+
<h4><strong>First optimization:</strong> Overlap gradient synchronization with backward pass</h4>
|
231 |
+
|
232 |
+
<h4><strong>Second optimization:</strong> Bucketing gradients</h4>
|
233 |
+
|
234 |
+
<h4><strong>Third optimization: I</strong>nterplay with gradient accumulation</h4>
|
235 |
+
|
236 |
+
<h3>Revisit global batch size</h3>
|
237 |
+
|
238 |
+
<h3>Our journey up to now</h3>
|
239 |
+
|
240 |
+
<h3>ZeRO (<strong>Ze</strong>ro <strong>R</strong>edundancy <strong>O</strong>ptimizer)</h3>
|
241 |
+
|
242 |
+
<h4>Memory usage revisited</h4>
|
243 |
+
|
244 |
+
<h4>ZeRO-1: Partitioning Optimizer States</h4>
|
245 |
+
|
246 |
+
<h4>ZeRO-2: Adding <strong>Gradient Partitioning</strong></h4>
|
247 |
+
|
248 |
+
<h4>ZeRO-3: Adding <strong>Parameter Partitioning</strong></h4>
|
249 |
+
|
250 |
+
<h2>Tensor Parallelism</h2>
|
251 |
+
|
252 |
+
<h3>Tensor Parallelism in a Transformer Block</h3>
|
253 |
+
|
254 |
+
<h3>Sequence Parallelism</h3>
|
255 |
+
|
256 |
+
<h2>Context Parallelism</h2>
|
257 |
+
|
258 |
+
<h3>Introducing Context Parallelism</h3>
|
259 |
+
|
260 |
+
<h3>Discovering Ring Attention</h3>
|
261 |
+
|
262 |
+
<h3>Zig-Zag Ring Attention – A Balanced Compute Implementation</h3>
|
263 |
+
|
264 |
+
<h2>Pipeline Parallelism</h2>
|
265 |
+
|
266 |
+
<h3>Splitting layers on various nodes - All forward, all backward</h3>
|
267 |
+
|
268 |
+
<h3>One-forward-one-backward and LLama 3.1 schemes</h3>
|
269 |
+
|
270 |
+
<h3>Interleaving stages</h3>
|
271 |
+
|
272 |
+
<h3>Zero Bubble and DualPipe</h3>
|
273 |
+
|
274 |
+
<h2>Expert parallelism</h2>
|
275 |
+
|
276 |
+
<h2>5D parallelism in a nutshell</h2>
|
277 |
+
|
278 |
+
<h2>How to Find the Best Training Configuration</h2>
|
279 |
+
|
280 |
+
<h2>Diving in the GPUs – fusing, threading, mixing</h2>
|
281 |
+
|
282 |
+
<h4>A primer on GPU</h4>
|
283 |
+
|
284 |
+
<h3>How to improve performance with Kernels ?</h3>
|
285 |
+
|
286 |
+
<h4>Memory Coalescing</h4>
|
287 |
+
|
288 |
+
<h4>Tiling</h4>
|
289 |
+
|
290 |
+
<h4>Thread Coarsening</h4>
|
291 |
+
|
292 |
+
<h4>Minimizing Control Divergence</h4>
|
293 |
+
|
294 |
+
<h3>Flash Attention 1-3</h3>
|
295 |
+
|
296 |
+
<h3>Fused Kernels</h3>
|
297 |
+
|
298 |
+
<h3>Mixed Precision Training</h3>
|
299 |
+
|
300 |
+
<h4>FP16 and BF16 training</h4>
|
301 |
+
|
302 |
+
<h4>FP8 pretraining</h4>
|
303 |
+
|
304 |
+
<h2>Conclusion</h2>
|
305 |
+
|
306 |
+
<h3>What you learned</h3>
|
307 |
+
|
308 |
+
<h3>What we learned</h3>
|
309 |
+
|
310 |
+
<h3>What’s next?</h3>
|
311 |
+
|
312 |
+
<h2>References</h2>
|
313 |
+
|
314 |
+
<h3>Landmark LLM Scaling Papers</h3>
|
315 |
+
|
316 |
+
<h3>Training Frameworks</h3>
|
317 |
+
|
318 |
+
<h3>Debugging</h3>
|
319 |
+
|
320 |
+
<h3>Distribution Techniques</h3>
|
321 |
+
|
322 |
+
<h3>CUDA Kernels</h3>
|
323 |
+
|
324 |
+
<h3>Hardware</h3>
|
325 |
+
|
326 |
+
<h3>Others</h3>
|
327 |
+
|
328 |
+
<h2>Appendix</h2>
|
329 |
|
330 |
</d-article>
|
331 |
|
src/index.html
CHANGED
@@ -212,6 +212,120 @@
|
|
212 |
<p>Now that we nailed a few key concept and terms let’s get started by revisiting the basic training steps of an LLM!</p>
|
213 |
|
214 |
<h2>First Steps: Training on one GPU</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
</d-article>
|
217 |
|
|
|
212 |
<p>Now that we nailed a few key concept and terms let’s get started by revisiting the basic training steps of an LLM!</p>
|
213 |
|
214 |
<h2>First Steps: Training on one GPU</h2>
|
215 |
+
|
216 |
+
<h3>Memory usage in Transformers</h3>
|
217 |
+
|
218 |
+
<h4>Memory profiling a training step</h4>
|
219 |
+
|
220 |
+
<h4>Weights/grads/optimizer states memory</h4>
|
221 |
+
|
222 |
+
<h4>Activations memory</h4>
|
223 |
+
|
224 |
+
<h3>Activation recomputation</h3>
|
225 |
+
|
226 |
+
<h3>Gradient accumulation</h3>
|
227 |
+
|
228 |
+
<h2>Data Parallelism</h2>
|
229 |
+
|
230 |
+
<h4><strong>First optimization:</strong> Overlap gradient synchronization with backward pass</h4>
|
231 |
+
|
232 |
+
<h4><strong>Second optimization:</strong> Bucketing gradients</h4>
|
233 |
+
|
234 |
+
<h4><strong>Third optimization: I</strong>nterplay with gradient accumulation</h4>
|
235 |
+
|
236 |
+
<h3>Revisit global batch size</h3>
|
237 |
+
|
238 |
+
<h3>Our journey up to now</h3>
|
239 |
+
|
240 |
+
<h3>ZeRO (<strong>Ze</strong>ro <strong>R</strong>edundancy <strong>O</strong>ptimizer)</h3>
|
241 |
+
|
242 |
+
<h4>Memory usage revisited</h4>
|
243 |
+
|
244 |
+
<h4>ZeRO-1: Partitioning Optimizer States</h4>
|
245 |
+
|
246 |
+
<h4>ZeRO-2: Adding <strong>Gradient Partitioning</strong></h4>
|
247 |
+
|
248 |
+
<h4>ZeRO-3: Adding <strong>Parameter Partitioning</strong></h4>
|
249 |
+
|
250 |
+
<h2>Tensor Parallelism</h2>
|
251 |
+
|
252 |
+
<h3>Tensor Parallelism in a Transformer Block</h3>
|
253 |
+
|
254 |
+
<h3>Sequence Parallelism</h3>
|
255 |
+
|
256 |
+
<h2>Context Parallelism</h2>
|
257 |
+
|
258 |
+
<h3>Introducing Context Parallelism</h3>
|
259 |
+
|
260 |
+
<h3>Discovering Ring Attention</h3>
|
261 |
+
|
262 |
+
<h3>Zig-Zag Ring Attention – A Balanced Compute Implementation</h3>
|
263 |
+
|
264 |
+
<h2>Pipeline Parallelism</h2>
|
265 |
+
|
266 |
+
<h3>Splitting layers on various nodes - All forward, all backward</h3>
|
267 |
+
|
268 |
+
<h3>One-forward-one-backward and LLama 3.1 schemes</h3>
|
269 |
+
|
270 |
+
<h3>Interleaving stages</h3>
|
271 |
+
|
272 |
+
<h3>Zero Bubble and DualPipe</h3>
|
273 |
+
|
274 |
+
<h2>Expert parallelism</h2>
|
275 |
+
|
276 |
+
<h2>5D parallelism in a nutshell</h2>
|
277 |
+
|
278 |
+
<h2>How to Find the Best Training Configuration</h2>
|
279 |
+
|
280 |
+
<h2>Diving in the GPUs – fusing, threading, mixing</h2>
|
281 |
+
|
282 |
+
<h4>A primer on GPU</h4>
|
283 |
+
|
284 |
+
<h3>How to improve performance with Kernels ?</h3>
|
285 |
+
|
286 |
+
<h4>Memory Coalescing</h4>
|
287 |
+
|
288 |
+
<h4>Tiling</h4>
|
289 |
+
|
290 |
+
<h4>Thread Coarsening</h4>
|
291 |
+
|
292 |
+
<h4>Minimizing Control Divergence</h4>
|
293 |
+
|
294 |
+
<h3>Flash Attention 1-3</h3>
|
295 |
+
|
296 |
+
<h3>Fused Kernels</h3>
|
297 |
+
|
298 |
+
<h3>Mixed Precision Training</h3>
|
299 |
+
|
300 |
+
<h4>FP16 and BF16 training</h4>
|
301 |
+
|
302 |
+
<h4>FP8 pretraining</h4>
|
303 |
+
|
304 |
+
<h2>Conclusion</h2>
|
305 |
+
|
306 |
+
<h3>What you learned</h3>
|
307 |
+
|
308 |
+
<h3>What we learned</h3>
|
309 |
+
|
310 |
+
<h3>What’s next?</h3>
|
311 |
+
|
312 |
+
<h2>References</h2>
|
313 |
+
|
314 |
+
<h3>Landmark LLM Scaling Papers</h3>
|
315 |
+
|
316 |
+
<h3>Training Frameworks</h3>
|
317 |
+
|
318 |
+
<h3>Debugging</h3>
|
319 |
+
|
320 |
+
<h3>Distribution Techniques</h3>
|
321 |
+
|
322 |
+
<h3>CUDA Kernels</h3>
|
323 |
+
|
324 |
+
<h3>Hardware</h3>
|
325 |
+
|
326 |
+
<h3>Others</h3>
|
327 |
+
|
328 |
+
<h2>Appendix</h2>
|
329 |
|
330 |
</d-article>
|
331 |
|