Spaces:
Running
Running
File size: 19,097 Bytes
f2c15d5 878bd55 f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 878bd55 143e8bd 878bd55 143e8bd 878bd55 f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 878bd55 143e8bd d4506c4 878bd55 f2c15d5 143e8bd d4506c4 878bd55 143e8bd 878bd55 143e8bd f2c15d5 6a71dad 878bd55 6a71dad 878bd55 f2c15d5 878bd55 d4506c4 878bd55 6a71dad 878bd55 f2c15d5 878bd55 f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 143e8bd 878bd55 f2c15d5 878bd55 f2c15d5 3cf77f9 f2c15d5 f7842b8 f2c15d5 143e8bd f2c15d5 143e8bd 878bd55 f2c15d5 143e8bd d4506c4 834ae60 16179ad 834ae60 16179ad f2c15d5 de593b3 f2c15d5 16179ad 834ae60 16179ad 834ae60 16179ad 834ae60 16179ad f2c15d5 878bd55 f7842b8 d4506c4 f2c15d5 143e8bd f2c15d5 143e8bd f2c15d5 143e8bd 878bd55 f2c15d5 d4506c4 f2c15d5 d4506c4 f2c15d5 d4506c4 f2c15d5 878bd55 16179ad 834ae60 f2c15d5 d4506c4 f2c15d5 d4506c4 f2c15d5 143e8bd f2c15d5 6a71dad f2c15d5 878bd55 143e8bd 878bd55 f2c15d5 878bd55 f2c15d5 878bd55 f2c15d5 878bd55 f2c15d5 6a71dad f2c15d5 878bd55 f2c15d5 143e8bd f2c15d5 878bd55 f2c15d5 878bd55 143e8bd 878bd55 f2c15d5 878bd55 f2c15d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import * as d3 from 'd3';
export function activationMemory(
a, // attention heads
b, // micro batch size
h, // hidden dimension size
h_ff, // feedforward dimension size (often h_ff = 4h)
L, // number of layers
s, // sequence length
v, // vocab size
tp = 1, // tensor model parallelism
mixed = true,
recomputation = "none",
ff_activation = "relu",
seq_parallel = false
) {
console.log('activationMemory called with:', { a, b, h, h_ff, L, s, v, tp, mixed, recomputation, ff_activation, seq_parallel });
// https://arxiv.org/pdf/2205.05198
const bytesPerValue = mixed ? 2 : 4;
let oneLayerAttention;
if (recomputation === "none" || recomputation === "full") {
if (seq_parallel) {
oneLayerAttention = s * b * h / tp * (bytesPerValue * 5 + 1) + ((2 * bytesPerValue + 1) * a * s * s * b); // eq (2)
} else {
oneLayerAttention = s * b * h * (bytesPerValue * 4 / tp + bytesPerValue + 1) + ((2 * bytesPerValue + 1) * a * s * s * b / tp); // eq (2)
}
} else if (recomputation === "selective") {
if (seq_parallel) {
oneLayerAttention = s * b * h / tp * (bytesPerValue * 5 + 1); // table 2
} else {
oneLayerAttention = s * b * h * (bytesPerValue * 4 / tp + bytesPerValue + 1); // table 2
}
} else {
throw new Error("Invalid recomputation value");
}
let oneLayerFeedforward;
if (ff_activation === "relu") {
if (seq_parallel) {
oneLayerFeedforward = (s * b * h * bytesPerValue / tp + (s * b * h_ff * bytesPerValue / tp) // inputs of 1st/2nd linear layers
+ s * b * h / tp); // dropout
} else {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue / tp) // inputs of 1st/2nd linear layers
+ s * b * h); // dropout
}
} else if (ff_activation === "gelu") {
if (seq_parallel) {
oneLayerFeedforward = (s * b * h * bytesPerValue / tp + (s * b * h_ff * bytesPerValue / tp) // inputs of 1st/2nd linear layers
+ s * b * h_ff * bytesPerValue / tp // inputs of activation function (not really necessary for Relu)
+ s * b * h / tp); // dropout
} else {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue / tp) // inputs of 1st/2nd linear layers
+ s * b * h_ff * bytesPerValue / tp // inputs of activation function (not really necessary for Relu)
+ s * b * h); // dropout
}
} else if (ff_activation === "swiglu") {
if (seq_parallel) {
oneLayerFeedforward = (s * b * h * bytesPerValue / tp + (s * b * h_ff * bytesPerValue / tp) // inputs of input/output linear layers
+ s * b * h_ff * bytesPerValue * 3 / tp // inputs of activation function
+ s * b * h / tp); // dropout (note that dropout is lower-precision - boolean)
} else {
oneLayerFeedforward = (s * b * h * bytesPerValue + (s * b * h_ff * bytesPerValue / tp) // inputs of input/output linear layers
+ s * b * h_ff * bytesPerValue * 3 / tp // inputs of activation function
+ s * b * h); // dropout (note that dropout is lower-precision - boolean)
}
}
let layerNorm;
if (seq_parallel) {
layerNorm = s * b * h * bytesPerValue / tp;
} else {
layerNorm = s * b * h * bytesPerValue;
}
const inputDropout = seq_parallel ? s * b * h / tp : s * b * h; // section 4.3
const outputLayerNorm = seq_parallel ? s * b * h * bytesPerValue / tp : s * b * h * bytesPerValue;
const outputLayerProjection = seq_parallel ? s * b * h * bytesPerValue / tp : s * b * h * bytesPerValue;
const outputCrossEntropy = seq_parallel ? s * b * v * 4 / tp : s * b * v * 4; // In FP32
let data
if (recomputation === "none" || recomputation === "selective") {
data = {
name: "Activation Memory",
children: [
...Array.from({ length: L }, (_, index) => ({
name: `Layer ${index + 1}`,
children: [
{ name: 'Attention', value: oneLayerAttention },
{ name: 'Feedforward', value: oneLayerFeedforward },
{ name: 'LayerNorm', value: 2 * layerNorm },
]
})),
{ name: 'Dropout', value: inputDropout },
{ name: 'LayerNorm', value: outputLayerNorm },
{ name: 'Projection', value: outputLayerProjection },
{ name: 'Cross Entropy', value: outputCrossEntropy }
]
};
} else if (recomputation === "full") {
data = {
name: "Activation Memory",
children: [
{ name: 'LayerInput', value: s * b * h * bytesPerValue * L },
{ name: 'Dropout', value: inputDropout },
{ name: 'LayerNorm', value: outputLayerNorm },
{ name: 'Projection', value: outputLayerProjection },
{ name: 'Cross Entropy', value: outputCrossEntropy }
]
};
} else {
throw new Error("Invalid recomputation value");
}
return data;
}
export function paramGradsOpt(h, L, s, v, k = 8, dp = 1, zero = 0, mixed = true) {
// h, # hidden dimension size
// L, # number of layers
// s, # sequence length
// v, # vocab size
// k=8, # parameters for optimizer (Adam: 8 = 4 bytes moments + 4 bytes variance)
// dp=1, # data parallelism
// zero = 0, 1, 2, 3, # zero data parallelism
// mixed=True # mixed precision training
console.log('paramGradsOpt called with:', { h, L, s, v, k, dp, zero, mixed });
const emb = h * (v + s);
const oneLayer = 12 * h ** 2 + 13 * h;
const other = 2 * h;
const n = emb + L * oneLayer + other;
if (mixed) {
k += 4;
}
const bytesPerParameter = mixed ? 2 : 4;
const data = {
name: "Parameters / Gradients / Optimizer States",
children: [
{ name: 'Parameters', value: zero >= 3 ? bytesPerParameter * n / dp : bytesPerParameter * n },
{ name: 'Gradients', value: zero >= 2 ? bytesPerParameter * n / dp : bytesPerParameter * n },
{ name: 'OptimizerAverages', value: zero >= 1 ? k * n / dp : k * n }
]
};
console.log('paramGradsOpt result:', data);
return data;
}
export function updateGraph() {
console.log('updateGraph called');
const a = +document.getElementById('a').value;
const b = +document.getElementById('b').value;
const h = +document.getElementById('h').value;
const h_ff = +document.getElementById('h_ff').value;
const L = +document.getElementById('L').value;
const s = +document.getElementById('s').value;
const v = +document.getElementById('v').value;
const k = +document.getElementById('k').value;
const tp = +document.getElementById('tp').value; // New: t parameter
const zero = document.getElementById('zero').value;
const dp = document.getElementById('dp').value;
const mixed = document.getElementById('mixed').checked;
const recomputation = document.getElementById('recomputation').value;
const ff_activation = document.getElementById('ff_activation').value;
const seq_parallel = document.getElementById('seq_parallel').checked;
console.log('Slider values:', { a, b, h, h_ff, L, s, v, k, tp, zero, dp, mixed, recomputation, ff_activation, seq_parallel });
const activationMemoryData = activationMemory(a, b, h, h_ff, L, s, v, tp, mixed, recomputation, ff_activation, seq_parallel);
const paramGradsOptValue = paramGradsOpt(h, L, s, v, k, dp, zero, mixed);
const data = {
name: "root",
children: [
{
name: 'Total',
value: 0,
children: [
activationMemoryData,
paramGradsOptValue
]
}
]
};
console.log('Data for treemap:', data);
const width = 700;
const height = 450;
const legendHeight = 50;
const svg = d3.select("#graph").select("svg");
svg.selectAll("*").remove();
svg.attr("viewBox", [0, 0, width, height + legendHeight]);
const treemap = d3.treemap()
.size([width, height])
.paddingOuter(3)
.paddingTop(19)
.paddingInner(3)
.round(true);
const root = d3.hierarchy(data)
.sum(d => d.value);
// .sort((a, b) => b.value - a.value);
// const fixedSize100GB = 100 * 1024 * 1024 * 1024; // 100GB in bytes
// if (root.children[0].value < fixedSize100GB) {
// root.value = fixedSize100GB;
// root.children[0].value = fixedSize100GB;
// }
console.log('Treemap root:', root);
treemap(root);
const color = d => {
switch (d.data.name) {
// Root and Total (container levels)
case 'root': return 'rgb(225, 225, 225)'; // Light Grey
case 'Total': return 'rgb(225, 225, 225)'; // Light Grey
// Give distinct colors to the main section containers
case 'Activation Memory': return 'rgb(78, 165, 183)'; // Orange
case 'Parameters / Gradients / Optimizer States': return 'rgb(232, 137, 171)'; // Teal Blue
// Parameters / Gradients / Optimizer States branch
case 'Parameters': return 'rgb(206, 192, 250)'; // Blue
case 'Gradients': return 'rgb(227, 138, 66)'; // Orange
case 'OptimizerAverages': return 'rgb(78, 165, 183)'; // Pink
// activationMemory branch - Layer components
case 'Attention': return 'rgb(206, 192, 250)'; // Purple
case 'Feedforward': return 'rgb(171, 232, 241)'; // Light Blue
case 'LayerNorm': return 'rgb(232, 137, 171)'; // Light Green
// activationMemory branch - other components
case 'Dropout': return 'rgb(67, 145, 108)'; // Dark Green
case 'Projection': return 'rgb(174, 214, 251)'; // Sky Blue
case 'Cross Entropy': return 'rgb(232, 137, 171)'; // Pink
// Default for any Layer nodes and unexpected cases
default: return 'rgb(227, 138, 66)'; // Light Grey
};
};
if (d3.select('#tooltip').empty()) {
d3.select('body')
.append('div')
.attr('id', 'tooltip')
.style('opacity', 0)
.style('position', 'absolute')
.style('background-color', 'white')
.style('padding', '4px')
.style('font-size', '12px')
.style('border-radius', '5px')
.style('box-shadow', '0px 0px 5px 0px rgba(0,0,0,0.3)');
}
const cell = svg.selectAll("g")
.data(root.descendants().filter(d => d.depth !== 0)) // Skip root node
.join("g")
.attr("transform", d => `translate(${d.x0},${d.y0})`)
.on('mouseover', (event, d) => {
const name = d.data.name;
const value = formatBytes(d.value);
d3.select('#tooltip').transition().duration(200).text(`${name}: ${value}`)
})
.on('mouseout', function() {
d3.select('#tooltip').style('opacity', 0)
})
.on('mousemove', function(event) {
d3.select('#tooltip').style('left', (event.pageX + 10) + 'px').style('top', (event.pageY + 10) + 'px').style('opacity', 1)
});
cell.append("rect")
.attr("width", d => d.x1 - d.x0)
.attr("height", d => d.y1 - d.y0)
.attr("fill", d => color(d))
.attr("stroke", d => d.depth === 1 ? color(d) : "white")
.attr("stroke-width", 1);
const fontSize = 10;
const padding = 2;
cell.append("text")
.attr("font-size", `${fontSize}px`)
.attr("font-family", "sans-serif")
.each(function (d) {
const node = d3.select(this);
const name = d.data.name;
const value = formatBytes(d.value);
if (d.depth === 1 || d.depth === 2) {
node.attr("transform", `translate(${padding},${fontSize + padding})`)
.attr("font-weight", "bold")
.attr("font-size", 12)
.text(`${name}: ${value}`);
} else {
// Child nodes
node.attr("transform", `translate(${padding},${fontSize + padding})`)
.text(name[0].toUpperCase()) // Display only the first letter
.attr("font-weight", "bold")
.append("title") // Add title for hover effect
.text(`${name}: ${value}`);
}
});
/*
// Adjust legend positioning
const legendData = root.children[0].children.concat(root.children[0]);
const legend = svg.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("text-anchor", "start")
.attr("transform", `translate(0, ${height})`)
.selectAll("g")
.data(legendData)
.join("g")
.attr("transform", (d, i) => `translate(${i * 240}, 0)`);
legend.append("rect")
.attr("x", 0)
.attr("width", 19)
.attr("height", 19)
.attr("fill", d => color(d))
.attr("stroke", '#f3f3f3')
.attr("stroke-width", 0);
legend.append("text")
.attr("x", 24)
.attr("y", 9.5)
.attr("dy", "0.32em")
.text(d => `${d.data.name}: ${formatBytes(d.value)}`);
*/
console.log('Treemap nodes created');
}
function formatBytes(bytes) {
const sizes = ['Bytes', 'KB', 'MB', 'GB', 'TB', 'PB'];
if (bytes === 0) return '0 Bytes';
const i = parseInt(Math.floor(Math.log(bytes) / Math.log(1024)), 10);
return `${(bytes / (1024 ** i)).toFixed(2)} ${sizes[i]}`;
}
const presets = {
"Llama 3 Tiny": { a: 16, b: 3, h: 1024, h_ff: 4096, L: 1, s: 7, v: 30522, k: 8, tp: 1, zero: "1", dp: 1, mixed: true, recomputation: "none", ff_activation: "gelu", seq_parallel: false },
"Llama 3 8B": { a: 32, b: 32, h: 4096, h_ff: 16384, L: 32, s: 256, v: 30522, k: 8, tp: 1, zero: "1", dp: 1, mixed: true, recomputation: "none", ff_activation: "swiglu", seq_parallel: false },
"Llama 3 70B": { a: 64, b: 32, h: 8192, h_ff: 32768, L: 80, s: 256, v: 30522, k: 8, tp: 8, zero: "1", dp: 8, mixed: true, recomputation: "none", ff_activation: "swiglu", seq_parallel: false },
"Llama 3 405B": { a: 128, b: 32, h: 16384, h_ff: 65536, L: 126, s: 256, v: 30522, k: 8, tp: 8, zero: "1", dp: 8, mixed: true, recomputation: "none", ff_activation: "swiglu", seq_parallel: false }
};
function setPresetValues(preset) {
if (preset === "custom") return;
const values = presets[preset];
Object.keys(values).forEach(key => {
const element = document.getElementById(key);
const inputElement = document.getElementById(`${key}_input`);
if (element) {
if (element.type === 'checkbox') {
element.checked = values[key];
} else {
element.value = values[key];
}
}
if (inputElement) {
inputElement.value = values[key];
}
});
updateGraph(); // Add this line to ensure the graph updates when a preset is selected
}
function syncSliderAndInput(sliderId, inputId) {
const slider = document.getElementById(sliderId);
const input = document.getElementById(inputId);
slider.addEventListener('input', () => {
input.value = slider.value;
updateGraph();
});
input.addEventListener('input', () => {
let value = parseInt(input.value);
if (isNaN(value)) {
value = parseInt(slider.min);
}
value = Math.max(parseInt(slider.min), Math.min(parseInt(slider.max), value));
slider.value = value;
input.value = value;
updateGraph();
});
}
export const init_memory_plot = function () {
console.log('Initializing memory plot');
const sliderIds = ['a', 'b', 'h', 'h_ff', 'L', 's', 'v', 'k', 'tp', 'dp'];
sliderIds.forEach(id => {
const slider = document.getElementById(id);
const input = document.getElementById(`${id}_input`);
if (slider && input) {
syncSliderAndInput(id, `${id}_input`);
} else {
console.warn(`Elements for ${id} not found`);
}
});
const recomputationSelect = document.getElementById('recomputation');
if (recomputationSelect) {
recomputationSelect.addEventListener('change', updateGraph);
} else {
console.warn('Recomputation select not found');
}
const ffActivationSelect = document.getElementById('ff_activation');
if (ffActivationSelect) {
ffActivationSelect.addEventListener('change', updateGraph);
} else {
console.warn('FF Activation select not found');
}
const zeroSelect = document.getElementById('zero');
if (zeroSelect) {
zeroSelect.addEventListener('change', updateGraph);
} else {
console.warn('Zero select not found');
}
const mixedCheckbox = document.getElementById('mixed');
if (mixedCheckbox) {
mixedCheckbox.addEventListener('change', updateGraph);
} else {
console.warn('Mixed checkbox not found');
}
const seqParallelCheckbox = document.getElementById('seq_parallel');
if (seqParallelCheckbox) {
seqParallelCheckbox.addEventListener('change', updateGraph);
} else {
console.warn('Seq Parallel checkbox not found');
}
const presetSelect = document.getElementById('presets');
if (presetSelect) {
presetSelect.addEventListener('change', (event) => {
setPresetValues(event.target.value);
});
} else {
console.warn('Preset select not found');
}
// Set max values for sliders
sliderIds.forEach(id => {
const slider = document.getElementById(id);
if (slider) {
switch (id) {
case 'a': slider.max = '128'; break;
case 'b': slider.max = '53248'; break;
case 'h': slider.max = '16384'; break;
case 'h_ff': slider.max = '65536'; break;
case 'L': slider.max = '126'; break;
case 's': slider.max = '128000'; break;
case 'v': slider.max = '100000'; break;
case 'k': slider.max = '16'; break;
case 'tp': slider.max = '16'; break;
case 'dp': slider.max = '256'; break;
}
} else {
console.warn(`Slider ${id} not found`);
}
});
console.log('Adding svg');
const graphContainer = document.getElementById('graph');
if (graphContainer) {
const svg = d3.select("#graph")
.append("svg")
} else {
console.warn('Graph container not found');
}
updateGraph();
}; |