8bitnand
Added support for streamlit and rag model
871255a
raw
history blame
2.71 kB
from google import SemanticSearch, GoogleSearch, Document
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
from transformers.utils import is_flash_attn_2_available
import yaml
import torch
def load_configs(config_file: str) -> dict:
with open(config_file, "r") as f:
configs = yaml.safe_load(f)
return configs
class RAGModel:
def __init__(self, configs) -> None:
self.configs = configs
self.device = configs["model"]["device"]
model_url = configs["model"]["genration_model"]
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
# )
self.model = AutoModelForCausalLM.from_pretrained(
model_url,
torch_dtype=torch.float16,
# quantization_config=quantization_config,
low_cpu_mem_usage=False,
attn_implementation="sdpa",
).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(
model_url,
)
def create_prompt(self, query, topk_items: list[str]):
context = "_ " + "\n-".join(c for c in topk_items)
base_prompt = f"""Based on the follwing context items, please answer the query.
Give time for yourself to read the context and then answer the query.
Do not return thinking process, just return the answer.
If you do not find the answer, or if the query is offesnsive or in any other way harmfull just return "I'm not aware of it"
Now use the following context items to answer the user query.
{context}.
user query : {query}
"""
dialog_template = [{"role": "user", "content": base_prompt}]
prompt = self.tokenizer.apply_chat_template(
conversation=dialog_template, tokenize=False, add_feneration_prompt=True
)
return prompt
def answer_query(self, query: str, topk_items: list[str]):
prompt = self.create_prompt(query, topk_items)
print(prompt)
input_ids = self.tokenizer(prompt, return_tensors="pt").to(self.device)
output = self.model.generate(**input_ids, max_new_tokens=512)
text = self.tokenizer.decode(output[0])
return text
if __name__ == "__main__":
configs = load_configs(config_file="rag.configs.yml")
query = "what is LLM"
# g = GoogleSearch(query)
# data = g.all_page_data
# d = Document(data, 512)
# s = SemanticSearch( "all-mpnet-base-v2", "mps")
# topk = s.semantic_search(query=query, k=32)
r = RAGModel(configs)
output = r.answer_query(query=query, topk_items=[""])
print(output)