Spaces:
Runtime error
Runtime error
| """Analogical reasoning implementation with advanced pattern matching and transfer learning.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Tuple, Callable | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class AnalogicalLevel(Enum): | |
| """Levels of analogical similarity.""" | |
| SURFACE = "surface" | |
| STRUCTURAL = "structural" | |
| SEMANTIC = "semantic" | |
| FUNCTIONAL = "functional" | |
| CAUSAL = "causal" | |
| ABSTRACT = "abstract" | |
| class MappingType(Enum): | |
| """Types of analogical mappings.""" | |
| DIRECT = "direct" | |
| TRANSFORMED = "transformed" | |
| COMPOSITE = "composite" | |
| ABSTRACT = "abstract" | |
| METAPHORICAL = "metaphorical" | |
| HYBRID = "hybrid" | |
| class AnalogicalPattern: | |
| """Represents a pattern for analogical matching.""" | |
| id: str | |
| level: AnalogicalLevel | |
| features: Dict[str, Any] | |
| relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) | |
| constraints: List[str] | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class AnalogicalMapping: | |
| """Represents a mapping between source and target domains.""" | |
| id: str | |
| type: MappingType | |
| source_elements: Dict[str, Any] | |
| target_elements: Dict[str, Any] | |
| correspondences: List[Tuple[str, str, float]] # (source, target, strength) | |
| transformations: List[Dict[str, Any]] | |
| confidence: float | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class AnalogicalSolution: | |
| """Represents a solution derived through analogical reasoning.""" | |
| id: str | |
| source_analogy: str | |
| mapping: AnalogicalMapping | |
| adaptation: Dict[str, Any] | |
| inference: Dict[str, Any] | |
| confidence: float | |
| validation: Dict[str, Any] | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| class AnalogicalReasoning(ReasoningStrategy): | |
| """ | |
| Advanced Analogical Reasoning implementation with: | |
| - Multi-level pattern matching | |
| - Sophisticated similarity metrics | |
| - Transfer learning capabilities | |
| - Dynamic adaptation mechanisms | |
| - Quality assessment | |
| - Learning from experience | |
| """ | |
| def __init__(self, | |
| min_similarity: float = 0.6, | |
| max_candidates: int = 5, | |
| adaptation_threshold: float = 0.7, | |
| learning_rate: float = 0.1): | |
| self.min_similarity = min_similarity | |
| self.max_candidates = max_candidates | |
| self.adaptation_threshold = adaptation_threshold | |
| self.learning_rate = learning_rate | |
| # Knowledge base | |
| self.patterns: Dict[str, AnalogicalPattern] = {} | |
| self.mappings: Dict[str, AnalogicalMapping] = {} | |
| self.solutions: Dict[str, AnalogicalSolution] = {} | |
| # Learning components | |
| self.pattern_weights: Dict[str, float] = defaultdict(float) | |
| self.success_history: List[Dict[str, Any]] = [] | |
| self.adaptation_history: List[Dict[str, Any]] = [] | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Main reasoning method implementing analogical reasoning.""" | |
| try: | |
| # Extract patterns from query | |
| patterns = await self._extract_patterns(query, context) | |
| # Find analogical matches | |
| matches = await self._find_matches(patterns, context) | |
| # Create and evaluate mappings | |
| mappings = await self._create_mappings(matches, context) | |
| # Generate and adapt solutions | |
| solutions = await self._generate_solutions(mappings, context) | |
| # Select best solution | |
| best_solution = await self._select_best_solution(solutions, context) | |
| # Learn from experience | |
| self._update_knowledge(patterns, mappings, best_solution) | |
| return { | |
| "success": True, | |
| "answer": best_solution.inference["conclusion"], | |
| "confidence": best_solution.confidence, | |
| "analogy": { | |
| "source": best_solution.source_analogy, | |
| "mapping": self._mapping_to_dict(best_solution.mapping), | |
| "adaptation": best_solution.adaptation | |
| }, | |
| "reasoning_trace": best_solution.metadata.get("reasoning_trace", []), | |
| "meta_insights": best_solution.metadata.get("meta_insights", []) | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in analogical reasoning: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]: | |
| """Extract patterns from query for analogical matching.""" | |
| prompt = f""" | |
| Extract analogical patterns from query: | |
| Query: {query} | |
| Context: {json.dumps(context)} | |
| For each pattern level: | |
| 1. Surface features | |
| 2. Structural relations | |
| 3. Semantic concepts | |
| 4. Functional roles | |
| 5. Causal relationships | |
| 6. Abstract principles | |
| Format as: | |
| [P1] | |
| Level: ... | |
| Features: ... | |
| Relations: ... | |
| Constraints: ... | |
| [P2] | |
| ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_patterns(response["answer"]) | |
| async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Find matching patterns in knowledge base.""" | |
| prompt = f""" | |
| Find analogical matches: | |
| Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])} | |
| Context: {json.dumps(context)} | |
| For each match provide: | |
| 1. Source domain | |
| 2. Similarity assessment | |
| 3. Key correspondences | |
| 4. Transfer potential | |
| Format as: | |
| [M1] | |
| Source: ... | |
| Similarity: ... | |
| Correspondences: ... | |
| Transfer: ... | |
| [M2] | |
| ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_matches(response["answer"]) | |
| async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]: | |
| """Create mappings between source and target domains.""" | |
| prompt = f""" | |
| Create analogical mappings: | |
| Matches: {json.dumps(matches)} | |
| Context: {json.dumps(context)} | |
| For each mapping specify: | |
| 1. [Type]: {" | ".join([t.value for t in MappingType])} | |
| 2. [Elements]: Source and target elements | |
| 3. [Correspondences]: Element mappings | |
| 4. [Transformations]: Required adaptations | |
| 5. [Confidence]: Mapping strength | |
| Format as: | |
| [Map1] | |
| Type: ... | |
| Elements: ... | |
| Correspondences: ... | |
| Transformations: ... | |
| Confidence: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_mappings(response["answer"]) | |
| async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]: | |
| """Generate solutions through analogical transfer.""" | |
| prompt = f""" | |
| Generate analogical solutions: | |
| Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])} | |
| Context: {json.dumps(context)} | |
| For each solution provide: | |
| 1. Analogical inference | |
| 2. Required adaptations | |
| 3. Validation criteria | |
| 4. Confidence assessment | |
| 5. Reasoning trace | |
| Format as: | |
| [S1] | |
| Inference: ... | |
| Adaptation: ... | |
| Validation: ... | |
| Confidence: ... | |
| Trace: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_solutions(response["answer"], mappings) | |
| async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution: | |
| """Select the best solution based on multiple criteria.""" | |
| prompt = f""" | |
| Evaluate and select best solution: | |
| Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])} | |
| Context: {json.dumps(context)} | |
| Evaluate based on: | |
| 1. Inference quality | |
| 2. Adaptation feasibility | |
| 3. Validation strength | |
| 4. Overall confidence | |
| Format as: | |
| [Evaluation] | |
| Rankings: ... | |
| Rationale: ... | |
| Selection: ... | |
| Confidence: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| selection = self._parse_selection(response["answer"]) | |
| # Find selected solution | |
| selected = max(solutions, key=lambda s: s.confidence) | |
| for solution in solutions: | |
| if solution.id == selection.get("selected_id"): | |
| selected = solution | |
| break | |
| return selected | |
| def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution): | |
| """Update knowledge base with new patterns and successful mappings.""" | |
| # Update patterns | |
| for pattern in patterns: | |
| if pattern.id not in self.patterns: | |
| self.patterns[pattern.id] = pattern | |
| self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence | |
| # Update mappings | |
| if solution.mapping.id not in self.mappings: | |
| self.mappings[solution.mapping.id] = solution.mapping | |
| # Record solution | |
| self.solutions[solution.id] = solution | |
| # Update history | |
| self.success_history.append({ | |
| "timestamp": datetime.now().isoformat(), | |
| "solution_id": solution.id, | |
| "confidence": solution.confidence, | |
| "patterns": [p.id for p in patterns], | |
| "mapping_type": solution.mapping.type.value | |
| }) | |
| # Update adaptation history | |
| self.adaptation_history.append({ | |
| "timestamp": datetime.now().isoformat(), | |
| "solution_id": solution.id, | |
| "adaptations": solution.adaptation, | |
| "success": solution.confidence >= self.adaptation_threshold | |
| }) | |
| def _parse_patterns(self, response: str) -> List[AnalogicalPattern]: | |
| """Parse patterns from response.""" | |
| patterns = [] | |
| current = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[P'): | |
| if current: | |
| patterns.append(current) | |
| current = None | |
| elif line.startswith('Level:'): | |
| level_str = line[6:].strip().lower() | |
| try: | |
| level = AnalogicalLevel(level_str) | |
| current = AnalogicalPattern( | |
| id=f"pattern_{len(patterns)}", | |
| level=level, | |
| features={}, | |
| relations=[], | |
| constraints=[], | |
| metadata={} | |
| ) | |
| except ValueError: | |
| logging.warning(f"Invalid analogical level: {level_str}") | |
| elif current: | |
| if line.startswith('Features:'): | |
| try: | |
| current.features = json.loads(line[9:].strip()) | |
| except: | |
| current.features = {"raw": line[9:].strip()} | |
| elif line.startswith('Relations:'): | |
| relations = [r.strip() for r in line[10:].split(',')] | |
| current.relations = [(r.split()[0], r.split()[1], r.split()[2]) | |
| for r in relations if len(r.split()) >= 3] | |
| elif line.startswith('Constraints:'): | |
| current.constraints = [c.strip() for c in line[12:].split(',')] | |
| if current: | |
| patterns.append(current) | |
| return patterns | |
| def _parse_matches(self, response: str) -> List[Dict[str, Any]]: | |
| """Parse matches from response.""" | |
| matches = [] | |
| current = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[M'): | |
| if current: | |
| matches.append(current) | |
| current = { | |
| "source": "", | |
| "similarity": 0.0, | |
| "correspondences": [], | |
| "transfer": [] | |
| } | |
| elif current: | |
| if line.startswith('Source:'): | |
| current["source"] = line[7:].strip() | |
| elif line.startswith('Similarity:'): | |
| try: | |
| current["similarity"] = float(line[11:].strip()) | |
| except: | |
| pass | |
| elif line.startswith('Correspondences:'): | |
| current["correspondences"] = [c.strip() for c in line[16:].split(',')] | |
| elif line.startswith('Transfer:'): | |
| current["transfer"] = [t.strip() for t in line[9:].split(',')] | |
| if current: | |
| matches.append(current) | |
| return matches | |
| def _parse_mappings(self, response: str) -> List[AnalogicalMapping]: | |
| """Parse mappings from response.""" | |
| mappings = [] | |
| current = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[Map'): | |
| if current: | |
| mappings.append(current) | |
| current = None | |
| elif line.startswith('Type:'): | |
| type_str = line[5:].strip().lower() | |
| try: | |
| mapping_type = MappingType(type_str) | |
| current = AnalogicalMapping( | |
| id=f"mapping_{len(mappings)}", | |
| type=mapping_type, | |
| source_elements={}, | |
| target_elements={}, | |
| correspondences=[], | |
| transformations=[], | |
| confidence=0.0, | |
| metadata={} | |
| ) | |
| except ValueError: | |
| logging.warning(f"Invalid mapping type: {type_str}") | |
| elif current: | |
| if line.startswith('Elements:'): | |
| try: | |
| elements = json.loads(line[9:].strip()) | |
| current.source_elements = elements.get("source", {}) | |
| current.target_elements = elements.get("target", {}) | |
| except: | |
| pass | |
| elif line.startswith('Correspondences:'): | |
| pairs = [c.strip() for c in line[16:].split(',')] | |
| for pair in pairs: | |
| parts = pair.split(':') | |
| if len(parts) >= 2: | |
| source = parts[0].strip() | |
| target = parts[1].strip() | |
| strength = float(parts[2]) if len(parts) > 2 else 1.0 | |
| current.correspondences.append((source, target, strength)) | |
| elif line.startswith('Transformations:'): | |
| try: | |
| current.transformations = json.loads(line[16:].strip()) | |
| except: | |
| current.transformations = [{"raw": line[16:].strip()}] | |
| elif line.startswith('Confidence:'): | |
| try: | |
| current.confidence = float(line[11:].strip()) | |
| except: | |
| pass | |
| if current: | |
| mappings.append(current) | |
| return mappings | |
| def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]: | |
| """Parse solutions from response.""" | |
| solutions = [] | |
| current = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[S'): | |
| if current: | |
| solutions.append(current) | |
| current = None | |
| mapping_idx = len(solutions) | |
| if mapping_idx < len(mappings): | |
| current = AnalogicalSolution( | |
| id=f"solution_{len(solutions)}", | |
| source_analogy="", | |
| mapping=mappings[mapping_idx], | |
| adaptation={}, | |
| inference={}, | |
| confidence=0.0, | |
| validation={}, | |
| metadata={} | |
| ) | |
| elif current: | |
| if line.startswith('Inference:'): | |
| try: | |
| current.inference = json.loads(line[10:].strip()) | |
| except: | |
| current.inference = {"conclusion": line[10:].strip()} | |
| elif line.startswith('Adaptation:'): | |
| try: | |
| current.adaptation = json.loads(line[11:].strip()) | |
| except: | |
| current.adaptation = {"steps": [line[11:].strip()]} | |
| elif line.startswith('Validation:'): | |
| try: | |
| current.validation = json.loads(line[11:].strip()) | |
| except: | |
| current.validation = {"criteria": [line[11:].strip()]} | |
| elif line.startswith('Confidence:'): | |
| try: | |
| current.confidence = float(line[11:].strip()) | |
| except: | |
| pass | |
| elif line.startswith('Trace:'): | |
| current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')] | |
| if current: | |
| solutions.append(current) | |
| return solutions | |
| def _parse_selection(self, response: str) -> Dict[str, Any]: | |
| """Parse solution selection from response.""" | |
| selection = { | |
| "selected_id": None, | |
| "confidence": 0.0, | |
| "rationale": [] | |
| } | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if line.startswith('Selection:'): | |
| selection["selected_id"] = line[10:].strip() | |
| elif line.startswith('Confidence:'): | |
| try: | |
| selection["confidence"] = float(line[11:].strip()) | |
| except: | |
| pass | |
| elif line.startswith('Rationale:'): | |
| selection["rationale"] = [r.strip() for r in line[10:].split(',')] | |
| return selection | |
| def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: | |
| """Convert pattern to dictionary for serialization.""" | |
| return { | |
| "id": pattern.id, | |
| "level": pattern.level.value, | |
| "features": pattern.features, | |
| "relations": pattern.relations, | |
| "constraints": pattern.constraints, | |
| "metadata": pattern.metadata | |
| } | |
| def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: | |
| """Convert mapping to dictionary for serialization.""" | |
| return { | |
| "id": mapping.id, | |
| "type": mapping.type.value, | |
| "source_elements": mapping.source_elements, | |
| "target_elements": mapping.target_elements, | |
| "correspondences": mapping.correspondences, | |
| "transformations": mapping.transformations, | |
| "confidence": mapping.confidence, | |
| "metadata": mapping.metadata | |
| } | |
| def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: | |
| """Convert solution to dictionary for serialization.""" | |
| return { | |
| "id": solution.id, | |
| "source_analogy": solution.source_analogy, | |
| "mapping": self._mapping_to_dict(solution.mapping), | |
| "adaptation": solution.adaptation, | |
| "inference": solution.inference, | |
| "confidence": solution.confidence, | |
| "validation": solution.validation, | |
| "metadata": solution.metadata | |
| } | |
| def get_pattern_statistics(self) -> Dict[str, Any]: | |
| """Get statistics about pattern usage and effectiveness.""" | |
| return { | |
| "total_patterns": len(self.patterns), | |
| "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}), | |
| "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0, | |
| "pattern_weights": dict(self.pattern_weights) | |
| } | |
| def get_mapping_statistics(self) -> Dict[str, Any]: | |
| """Get statistics about mapping effectiveness.""" | |
| return { | |
| "total_mappings": len(self.mappings), | |
| "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}), | |
| "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0, | |
| "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()}) | |
| } | |
| def get_solution_statistics(self) -> Dict[str, Any]: | |
| """Get statistics about solution quality.""" | |
| return { | |
| "total_solutions": len(self.solutions), | |
| "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0, | |
| "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0 | |
| } | |
| def clear_knowledge_base(self): | |
| """Clear the knowledge base.""" | |
| self.patterns.clear() | |
| self.mappings.clear() | |
| self.solutions.clear() | |
| self.pattern_weights.clear() | |
| self.success_history.clear() | |
| self.adaptation_history.clear() | |