Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| from src.display.utils import AutoEvalColumnQA, COLS | |
| from src.benchmarks import BENCHMARK_COLS_QA, BenchmarksQA | |
| def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame: | |
| return df.loc[df["Reranking Model"].isin(reranking_query)] | |
| def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[ | |
| AutoEvalColumnQA.retrieval_model.name, | |
| AutoEvalColumnQA.reranking_model.name, | |
| ] | |
| ) | |
| return filtered_df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, domain_query: list, language_query: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumnQA.retrieval_model.name, | |
| AutoEvalColumnQA.reranking_model.name, | |
| AutoEvalColumnQA.average.name | |
| ] | |
| selected_cols = [] | |
| for c in COLS: | |
| if c not in df.columns: | |
| continue | |
| if c not in BENCHMARK_COLS_QA: | |
| continue | |
| eval_col = BenchmarksQA[c].value | |
| if eval_col.domain not in domain_query: | |
| continue | |
| if eval_col.lang not in language_query: | |
| continue | |
| selected_cols.append(c) | |
| # We use COLS to maintain sorting | |
| filtered_df = df[always_here_cols + selected_cols] | |
| filtered_df[AutoEvalColumnQA.average.name] = filtered_df[selected_cols].mean(axis=1).round(decimals=2) | |
| return filtered_df | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| domains: list, | |
| langs: list, | |
| reranking_query: list, | |
| query: str, | |
| ): | |
| filtered_df = filter_models(hidden_df, reranking_query) | |
| filtered_df = filter_queries(query, filtered_df) | |
| df = select_columns(filtered_df, domains, langs) | |
| return df |