import torch import torchvision from torch import nn from torchvision.models._api import WeightsEnum from torch.hub import load_state_dict_from_url def get_state_dict(self, *args, **kwargs): kwargs.pop("check_hash") return load_state_dict_from_url(self.url, *args, **kwargs) WeightsEnum.get_state_dict = get_state_dict def create_effnetb3_model(num_classes:int=30, seed:int=42): weights = torchvision.models.EfficientNet_B3_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b3(weights=weights) for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1536, out_features=128), nn.ReLU(), nn.Linear(in_features=128, out_features=num_classes), ) return model, transforms