File size: 14,849 Bytes
adb1e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353ba87
 
 
 
 
adb1e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f680d12
 
 
1e1ba08
 
f680d12
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# ✅ STEP 5: Write the app.py file

import os
import io
import json
import time
import base64
import streamlit as st
from groq import Groq
from gtts import gTTS
from audiorecorder import audiorecorder
from faster_whisper import WhisperModel
from pathlib import Path
from pydub import AudioSegment

# Load environment variable for GROQ API KEY
GROQ_API_KEY = os.environ.get ("GROQ_API_KEY") 
if not GROQ_API_KEY:
    raise ValueError("please set the GROQ_API_KEY environment variable")
# --------------------.get ()----
# Initialize session history & flags
# ------------------------
if "history" not in st.session_state:
    st.session_state.history = []
if "last_answer" not in st.session_state:
    st.session_state.last_answer = None
if "last_audio" not in st.session_state:
    st.session_state.last_audio = None
if "just_generated" not in st.session_state:
    st.session_state.just_generated = False
if "suppress_audio" not in st.session_state:
    st.session_state.suppress_audio = False
if "playing" not in st.session_state:
    st.session_state.playing = None
if "play_autoplay" not in st.session_state:
    st.session_state.play_autoplay = False
if "selected_audio_path" not in st.session_state:
    st.session_state.selected_audio_path = None

history = st.session_state.history  # shorthand

# ------------------------
# Persistent Chat Memory
# ------------------------
def ensure_tag_dirs(tag):
    base = Path("chat_data") / tag
    (base / "uploads").mkdir(parents=True, exist_ok=True)
    (base / "downloads").mkdir(parents=True, exist_ok=True)
    return base

def get_chat_file(tag):
    return ensure_tag_dirs(tag) / f"{tag}.json"

def load_chat(tag):
    path = get_chat_file(tag)
    if path.exists():
        try:
            return json.loads(path.read_text())
        except Exception:
            return []
    return []

def save_chat(tag, history):
    path = get_chat_file(tag)
    tmp = path.with_suffix(".tmp")
    tmp.write_text(json.dumps(history, ensure_ascii=False, indent=2))
    tmp.replace(path)

# ------------------------
# Autoplay helper
# ------------------------
# ------------------------
# Audio player helper (manual play only)
# ------------------------
def autoplay_audio(file_path):
    with open(file_path, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    md = f"""
    <audio controls>
        <source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
    </audio>
    """
    st.markdown(md, unsafe_allow_html=True)

# ------------------------
# Sidebar settings
# ------------------------
st.sidebar.title("🔧 Settings")

# =====================================
# Sidebar: Select Conversation Mode
# =====================================
st.sidebar.markdown("### ⚙️ Conversation Mode")

mode = st.sidebar.selectbox(
    "Select Conversation Mode",
    ["voice_chat", "text_chat"],
    key="chat_mode"
)

# Ensure chat_data folder for this mode
chat_tag = mode
if not st.session_state.history:
    st.session_state.history.extend(load_chat(chat_tag))

st.markdown(
    "<h2 style='text-align: center; color: #1E90FF;'>🎤 Speech ↔ Text ↔ Speech Chatbot</h2>",
    unsafe_allow_html=True
)
groq_key = st.sidebar.text_input("GROQ_API_KEY", os.getenv("GROQ_API_KEY", ""), type="password")
groq_model = st.sidebar.selectbox(
    "Groq Model",
    ["llama-3.1-8b-instant", "llama-3.3-70b-versatile", "meta-llama/llama-guard-4-12b"]
)
whisper_size = st.sidebar.selectbox("Whisper model size", ["tiny", "base", "small", "medium", "large-v3"], index=1)
whisper_dtype = st.sidebar.selectbox("Compute type", ["int8", "float16", "float32"], index=0)
tts_lang = st.sidebar.text_input("gTTS Language Code", "en")

speech_rate = st.sidebar.slider("Speech Rate (%)", 50, 150, 100, 5)
pitch_shift = st.sidebar.slider("Pitch Shift (semitones)", -5, 5, 0, 1)

# ------------------------
# Feedback Summary in Sidebar
# ------------------------
likes = sum(1 for m in history if m.get("feedback") == "like")
dislikes = sum(1 for m in history if m.get("feedback") == "dislike")

st.sidebar.markdown("### 📝 Feedback Summary")
st.sidebar.write(f"👍 Likes: {likes}")
st.sidebar.write(f"👎 Dislikes: {dislikes}")

if st.sidebar.button("🗑️ Clear Feedback Summary"):
    for m in history:
        if "feedback" in m:
            m["feedback"] = None
    save_chat(chat_tag, history)
    st.session_state.playing = None
    st.rerun()

# ------------------------
# Conversation history dropdown
# ------------------------
st.sidebar.markdown("### 💬 Conversation History")
questions = [m["content"] for m in history if m["role"] == "user"]
selected_q = st.sidebar.selectbox("Select a past question", [""] + questions, index=0)

# ------------------------
# Delete entire history
# ------------------------
if st.sidebar.button("🗑️ Delete History"):
    st.session_state.confirm_delete = True

if st.session_state.get("confirm_delete", False):
    st.sidebar.warning("⚠️ Are you sure you want to delete the entire history?")
    col1, col2 = st.sidebar.columns([1, 1])
    with col1:
        if st.button("✅ Yes, delete"):
            st.session_state.history.clear()
            save_chat(chat_tag, st.session_state.history)
            st.session_state.playing = None
            st.session_state.last_answer = None
            st.session_state.last_audio = None
            st.session_state.selected_audio_path = None
            st.session_state.confirm_delete = False
            st.rerun()
    with col2:
        if st.button("❌ Cancel"):
            st.session_state.confirm_delete = False
            st.rerun()

# ======================================================
# MODE HANDLING
# ======================================================
if mode == "voice_chat":
    st.markdown("<h3 style='text-align: center; color: #1E90FF;'>🎤 Voice Chat Mode</h3>", unsafe_allow_html=True)

    # Recording + Upload
    audio = audiorecorder("🎙️ Start Recording", "⏹️ Stop Recording")
    uploaded = st.file_uploader("📂 Or upload an audio file", type=["wav", "mp3", "m4a"])

    wav_path = None
    if len(audio) > 0:
        wav_path = ensure_tag_dirs(chat_tag) / "uploads" / "recorded.wav"
        audio.export(wav_path, format="wav")
        st.audio(str(wav_path))
    elif uploaded:
        wav_path = ensure_tag_dirs(chat_tag) / "uploads" / uploaded.name
        with open(wav_path, "wb") as f:
            f.write(uploaded.read())
        st.audio(str(wav_path))

    # Process Audio
    if wav_path and st.button("🧠 Transcribe → Ask Groq → Speak"):
        model = WhisperModel(whisper_size, device="cpu", compute_type=whisper_dtype)
        segments, _ = model.transcribe(str(wav_path))
        transcript = " ".join([seg.text for seg in segments])
        st.success(f"🗣️ You said: {transcript}")

        client = Groq(api_key=groq_key)
        resp = client.chat.completions.create(
            model=groq_model,
            messages=[
                {"role": "system", "content": "You are a helpful AI voice assistant."},
                {"role": "user", "content": transcript},
            ],
        )
        answer = resp.choices[0].message.content

        tts = gTTS(answer, lang=tts_lang)
        buf = io.BytesIO()
        tts.write_to_fp(buf)
        buf.seek(0)
        audio_seg = AudioSegment.from_file(buf, format="mp3")

        if speech_rate != 100:
            audio_seg = audio_seg._spawn(audio_seg.raw_data, overrides={
                "frame_rate": int(audio_seg.frame_rate * (speech_rate / 100.0))
            }).set_frame_rate(audio_seg.frame_rate)

        if pitch_shift != 0:
            new_sample_rate = int(audio_seg.frame_rate * (2.0 ** (pitch_shift / 12.0)))
            audio_seg = audio_seg._spawn(audio_seg.raw_data, overrides={'frame_rate': new_sample_rate})
            audio_seg = audio_seg.set_frame_rate(44100)

        out_path = ensure_tag_dirs(chat_tag) / "downloads" / f"voice_{int(time.time())}.mp3"
        audio_seg.export(out_path, format="mp3")

        history.append({"role": "user", "content": transcript})
        history.append({"role": "assistant", "content": answer, "audio": str(out_path)})
        save_chat(chat_tag, history)

        st.session_state.last_answer = answer
        st.session_state.last_audio = str(out_path)
        st.session_state.just_generated = True
        st.session_state.suppress_audio = False
        st.session_state.playing = None
        st.session_state.selected_audio_path = None

elif mode == "text_chat":
    st.markdown("<h3 style='text-align: center; color: #1E90FF;'>⌨️ Text Chat Mode</h3>", unsafe_allow_html=True)

    with st.form("text_chat_form", clear_on_submit=True):
        user_input = st.text_input("Type your question here:", key="text_chat_input")
        submitted = st.form_submit_button("Send")

    if submitted and user_input:
        history.append({"role": "user", "content": user_input})

        client = Groq(api_key=groq_key)
        resp = client.chat.completions.create(
            model=groq_model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant."},
                {"role": "user", "content": user_input},
            ],
        )
        assistant_reply = resp.choices[0].message.content

        assistant_msg = {"role": "assistant", "content": assistant_reply}

        # Save TTS audio
        tts = gTTS(assistant_reply, lang=tts_lang)
        out_path = ensure_tag_dirs(chat_tag) / "downloads" / f"text_{int(time.time())}.mp3"
        tts.save(str(out_path))
        assistant_msg["audio"] = str(out_path)

        history.append(assistant_msg)
        save_chat(chat_tag, history)

        st.session_state.last_answer = assistant_reply
        st.session_state.last_audio = str(out_path)
        st.session_state.just_generated = True
        st.session_state.suppress_audio = False
        st.session_state.playing = None
        st.session_state.selected_audio_path = None

        st.rerun()

# ======================================================
# 3️⃣ Speech Output
# ======================================================
st.subheader("🔊 Speech Output")

if st.session_state.last_audio:
    if st.session_state.suppress_audio:
        autoplay_audio(st.session_state.last_audio)
        st.session_state.suppress_audio = False
    elif st.session_state.just_generated:
        autoplay_audio(st.session_state.last_audio)
        st.session_state.just_generated = False
    else:
        autoplay_audio(st.session_state.last_audio)

# ======================================================
# 4️⃣ Selected Conversation
# ======================================================
if selected_q:
    st.markdown("<h3 style='text-align: center; color: #2E86C1;'>📜 Selected Conversation</h3>", unsafe_allow_html=True)
    st.markdown(f"**You:** {selected_q}")

    for idx, msg in enumerate(history):
        if msg["role"] == "user" and msg["content"] == selected_q:
            if idx + 1 < len(history) and history[idx + 1]["role"] == "assistant":
                answer_msg = history[idx + 1]
                st.markdown(f"**Assistant:** {answer_msg['content']}")

                if st.button("🗑️ Delete This Conversation", key=f"delete_selected_{idx}"):
                    del history[idx:idx+2]
                    save_chat(chat_tag, history)
                    st.session_state.playing = None
                    st.session_state.selected_audio_path = None
                    st.rerun()

                if "audio" in answer_msg:
                    if st.button("▶️ Play Audio (Selected)", key=f"play_selected_{idx}"):
                        st.session_state.playing = None
                        st.session_state.suppress_audio = True
                        st.session_state.selected_audio_path = answer_msg["audio"]
                        st.rerun()

                    if st.session_state.selected_audio_path == answer_msg["audio"]:
                        with open(answer_msg["audio"], "rb") as f:
                            b64 = base64.b64encode(f.read()).decode()
                        md = f"""
                        <audio controls>
                            <source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
                        </audio>
                        """
                        st.markdown(md, unsafe_allow_html=True)
            break

# ======================================================
# 5️⃣ Latest Conversation
# ======================================================
st.markdown("<h3 style='text-align: center; color: #117A65;'>💬 Latest Conversation</h3>", unsafe_allow_html=True)

if len(history) >= 2 and history[-2]["role"] == "user" and history[-1]["role"] == "assistant":
    user_msg = history[-2]
    assistant_msg = history[-1]

    st.markdown(f"**You:** {user_msg['content']}")
    st.markdown(f"**Assistant:** {assistant_msg['content']}")

    if "audio" in assistant_msg:
        col1, col2 = st.columns([1, 1])
        with col1:
            if st.button("▶️ Play Audio", key="play_latest"):
                st.session_state.playing = assistant_msg["audio"]
                st.session_state.selected_audio_path = None
                st.rerun()

            if st.session_state.playing == assistant_msg["audio"]:
                with open(assistant_msg["audio"], "rb") as f:
                    b64 = base64.b64encode(f.read()).decode()
                st.markdown(
                    f"""
                    <audio controls>
                        <source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
                    </audio>
                    """,
                    unsafe_allow_html=True,
                )

        with col2:
            if st.button("🗑️ Delete This Q+A", key="delete_latest"):
                del history[-2:]
                save_chat(chat_tag, history)
                st.session_state.playing = None
                st.rerun()

    if "feedback" not in assistant_msg:
        assistant_msg["feedback"] = None

    col1, col2 = st.columns([1, 1])
    with col1:
        if st.button("👍 Like", key="like_latest"):
            assistant_msg["feedback"] = "like"
            save_chat(chat_tag, history)
            st.rerun()
    with col2:
        if st.button("👎 Dislike", key="dislike_latest"):
            assistant_msg["feedback"] = "dislike"
            save_chat(chat_tag, history)
            st.rerun()

    if assistant_msg["feedback"] == "like":
        st.success("You liked this response 👍")
    elif assistant_msg["feedback"] == "dislike":
        st.error("You disliked this response 👎")

    st.markdown("---")

# ✅ STEP 6: Launch Streamlit via ngrok

!wget -q -O - ipv4.icanhazip.com 
!streamlit run app.py & npx localtunnel --port 8501