Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,97 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"Pizza": 10.99,
|
15 |
-
"Burger": 6.99,
|
16 |
-
"Pasta": 8.49,
|
17 |
-
"Salad": 5.49,
|
18 |
-
"Soda": 1.99,
|
19 |
-
"Coffee": 2.99
|
20 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
26 |
-
sample_rate = 16000
|
27 |
-
|
28 |
-
# Download preprocessor, encoder, and tokenizer
|
29 |
-
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
30 |
-
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
31 |
-
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
32 |
-
|
33 |
-
async def text_to_speech(text):
|
34 |
-
communicate = edge_tts.Communicate(text)
|
35 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
36 |
-
tmp_path = tmp_file.name
|
37 |
-
await communicate.save(tmp_path)
|
38 |
-
return tmp_path
|
39 |
-
|
40 |
-
def resample(audio_fp32, sr):
|
41 |
-
return soxr.resample(audio_fp32, sr, sample_rate)
|
42 |
-
|
43 |
-
def to_float32(audio_buffer):
|
44 |
-
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
45 |
-
|
46 |
-
def transcribe(audio_path):
|
47 |
-
audio_file = AudioSegment.from_file(audio_path)
|
48 |
-
sr = audio_file.frame_rate
|
49 |
-
audio_buffer = np.array(audio_file.get_array_of_samples())
|
50 |
-
|
51 |
-
audio_fp32 = to_float32(audio_buffer)
|
52 |
-
audio_16k = resample(audio_fp32, sr)
|
53 |
-
|
54 |
-
input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
55 |
-
length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
56 |
-
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
57 |
-
|
58 |
-
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
59 |
-
|
60 |
-
blank_id = tokenizer.vocab_size()
|
61 |
-
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
62 |
-
text = tokenizer.decode_ids(decoded_prediction)
|
63 |
-
|
64 |
-
return text
|
65 |
-
|
66 |
-
def generate_menu():
|
67 |
-
menu_text = "Here is our menu:\n"
|
68 |
-
for item, price in MENU.items():
|
69 |
-
menu_text += f"{item}: ${price:.2f}\n"
|
70 |
-
menu_text += "What would you like to order?"
|
71 |
-
return menu_text
|
72 |
-
|
73 |
-
def handle_cart(command):
|
74 |
-
global cart
|
75 |
-
response = ""
|
76 |
-
|
77 |
-
# Check for menu-related commands
|
78 |
-
if "menu" in command.lower():
|
79 |
-
response = generate_menu()
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
if item.lower() in command.lower():
|
85 |
cart.append(item)
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
response = "Your cart contains:\n" + ", ".join(cart)
|
93 |
else:
|
94 |
-
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
response = "Your final order is:\n" + ", ".join(cart) + ". Thank you for your order!"
|
100 |
-
cart = [] # Clear the cart
|
101 |
else:
|
102 |
-
|
|
|
|
|
103 |
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
return "Error: Could not transcribe audio.", "Error: Could not process your request.", None
|
114 |
|
115 |
-
with gr.
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
119 |
|
120 |
-
|
121 |
-
transcribed_text = gr.Textbox(label="Transcribed Text")
|
122 |
-
response_text = gr.Textbox(label="GPT Response")
|
123 |
-
response_audio = gr.Audio(label="Response Audio")
|
124 |
|
125 |
-
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from gtts import gTTS
|
3 |
+
import os
|
4 |
+
import speech_recognition as sr
|
5 |
+
|
6 |
+
# Initialize recognizer
|
7 |
+
recognizer = sr.Recognizer()
|
8 |
+
|
9 |
+
# Menu items
|
10 |
+
menu_items = {
|
11 |
+
"biryani": ["Chicken Biryani", "Mutton Biryani", "Vegetable Biryani", "Egg Biryani"],
|
12 |
+
"starters": ["Chicken Tikka", "Paneer Tikka", "Fish Fry", "Veg Manchurian"],
|
13 |
+
"drinks": ["Coke", "Pepsi", "Lemonade", "Mango Juice", "Water"]
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
+
cart = []
|
16 |
+
|
17 |
+
# Text-to-Speech Function
|
18 |
+
def text_to_speech(text):
|
19 |
+
"""Convert text to speech and provide audio file."""
|
20 |
+
tts = gTTS(text=text, lang='en')
|
21 |
+
file_path = "response.mp3"
|
22 |
+
tts.save(file_path)
|
23 |
+
return file_path
|
24 |
+
|
25 |
+
# Read Menu Function
|
26 |
+
def read_menu():
|
27 |
+
"""Generate the menu text and read it aloud."""
|
28 |
+
menu_text = "Here is the menu. Starting with Biryani options: "
|
29 |
+
for item in menu_items["biryani"]:
|
30 |
+
menu_text += item + ". "
|
31 |
+
menu_text += "Now the Starters: "
|
32 |
+
for item in menu_items["starters"]:
|
33 |
+
menu_text += item + ". "
|
34 |
+
menu_text += "Finally, Drinks: "
|
35 |
+
for item in menu_items["drinks"]:
|
36 |
+
menu_text += item + ". "
|
37 |
+
return menu_text, text_to_speech(menu_text)
|
38 |
+
|
39 |
+
# Process Voice Command
|
40 |
+
def process_command(audio_path):
|
41 |
+
"""Process the user's voice command."""
|
42 |
+
try:
|
43 |
+
with sr.AudioFile(audio_path) as source:
|
44 |
+
audio_data = recognizer.record(source)
|
45 |
+
command = recognizer.recognize_google(audio_data).lower()
|
46 |
+
except Exception as e:
|
47 |
+
error_text = "Sorry, I could not process the audio."
|
48 |
+
return "Error", text_to_speech(error_text)
|
49 |
|
50 |
+
if "menu" in command:
|
51 |
+
menu_text, menu_audio = read_menu()
|
52 |
+
return menu_text, menu_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
for category, items in menu_items.items():
|
55 |
+
for item in items:
|
56 |
+
if item.lower() in command:
|
|
|
57 |
cart.append(item)
|
58 |
+
response_text = f"{item} has been added to your cart."
|
59 |
+
return response_text, text_to_speech(response_text)
|
60 |
|
61 |
+
if "cart" in command:
|
62 |
+
if not cart:
|
63 |
+
response_text = "Your cart is empty."
|
|
|
64 |
else:
|
65 |
+
response_text = "Your cart contains: " + ", ".join(cart)
|
66 |
+
return response_text, text_to_speech(response_text)
|
67 |
|
68 |
+
if "submit" in command or "done" in command:
|
69 |
+
if not cart:
|
70 |
+
response_text = "Your cart is empty. Add some items before submitting."
|
|
|
|
|
71 |
else:
|
72 |
+
response_text = "Your final order is: " + ", ".join(cart) + ". Thank you for your order!"
|
73 |
+
cart.clear()
|
74 |
+
return response_text, text_to_speech(response_text)
|
75 |
|
76 |
+
error_text = "Sorry, I couldn't understand your request."
|
77 |
+
return error_text, text_to_speech(error_text)
|
78 |
|
79 |
+
# Gradio App
|
80 |
+
def app():
|
81 |
+
"""Create the Gradio interface."""
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("# Voice-Activated Restaurant Menu System")
|
84 |
+
gr.Markdown("Speak your command to interact with the menu system dynamically.")
|
|
|
|
|
85 |
|
86 |
+
with gr.Row():
|
87 |
+
voice_input = gr.Audio(type="filepath", label="Speak Your Command")
|
88 |
+
transcribed_text = gr.Textbox(label="Transcribed Command")
|
89 |
+
response_text = gr.Textbox(label="Response Text")
|
90 |
+
audio_output = gr.Audio(label="Audio Response")
|
91 |
|
92 |
+
voice_input.change(fn=process_command, inputs=voice_input, outputs=[response_text, audio_output])
|
|
|
|
|
|
|
93 |
|
94 |
+
return demo
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
+
app().launch()
|