Spaces:
Runtime error
Runtime error
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import json
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 4 |
+
from peft import LoraConfig, get_peft_model
|
| 5 |
+
from datasets import Dataset
|
| 6 |
+
|
| 7 |
+
# β
Load Extracted Data
|
| 8 |
+
with open("medical_dataset.json", "r", encoding="utf-8") as f:
|
| 9 |
+
data = json.load(f)
|
| 10 |
+
|
| 11 |
+
dataset = Dataset.from_list(data)
|
| 12 |
+
|
| 13 |
+
# β
Load Tokenizer
|
| 14 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 16 |
+
|
| 17 |
+
if tokenizer.pad_token is None:
|
| 18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 19 |
+
|
| 20 |
+
# β
Tokenize Data
|
| 21 |
+
def preprocess_function(examples):
|
| 22 |
+
inputs = [f"Medical Q&A: {ex['prompt']} {ex['response']}" for ex in examples]
|
| 23 |
+
model_inputs = tokenizer(inputs, padding="max_length", truncation=True, max_length=512)
|
| 24 |
+
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
| 25 |
+
return model_inputs
|
| 26 |
+
|
| 27 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
| 28 |
+
tokenized_dataset = tokenized_dataset.remove_columns(["prompt", "response"])
|
| 29 |
+
|
| 30 |
+
# β
Load Model with QLoRA (4-bit Precision)
|
| 31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
model_name,
|
| 33 |
+
load_in_4bit=True,
|
| 34 |
+
device_map="auto"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
lora_config = LoraConfig(
|
| 38 |
+
r=16,
|
| 39 |
+
lora_alpha=32,
|
| 40 |
+
target_modules=["q_proj", "v_proj"],
|
| 41 |
+
lora_dropout=0.05,
|
| 42 |
+
bias="none"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
model = get_peft_model(model, lora_config)
|
| 46 |
+
|
| 47 |
+
# β
Define Training Arguments
|
| 48 |
+
training_args = TrainingArguments(
|
| 49 |
+
output_dir="./medical_llama2",
|
| 50 |
+
per_device_train_batch_size=1,
|
| 51 |
+
num_train_epochs=2, # 2 Epochs
|
| 52 |
+
logging_dir="./logs",
|
| 53 |
+
save_steps=100,
|
| 54 |
+
evaluation_strategy="no"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# β
Train Model
|
| 58 |
+
trainer = Trainer(
|
| 59 |
+
model=model,
|
| 60 |
+
args=training_args,
|
| 61 |
+
train_dataset=tokenized_dataset
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
trainer.train()
|
| 65 |
+
|
| 66 |
+
# β
Save Model
|
| 67 |
+
trainer.save_model("fine_tuned_medical_llama2")
|
| 68 |
+
tokenizer.save_pretrained("fine_tuned_medical_llama2")
|