Spaces:
Running
Running
Upload 3 files
Browse files- README.md +15 -7
- app.py +114 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,14 +1,22 @@
|
|
1 |
---
|
2 |
-
title: Vlm
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Vlm Paligemma2 3B
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Running the VLM PaliGemma 2 3B
|
12 |
---
|
13 |
|
14 |
+
If you are interested in how to create this app, the following two articles will be useful.
|
15 |
+
|
16 |
+
Create an App with Streamlit on Hugging Face Spaces to Showcase your AI/ML Projects
|
17 |
+
|
18 |
+
https://medium.com/p/4edd8f30d542
|
19 |
+
|
20 |
+
Create Hugging Face Spaces to Showcase your AI/ML Projects: A Step-by-Step Guide
|
21 |
+
|
22 |
+
https://medium.com/p/11cd1b4463fc
|
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### import packages
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
PaliGemmaProcessor,
|
5 |
+
PaliGemmaForConditionalGeneration,
|
6 |
+
)
|
7 |
+
import streamlit as st
|
8 |
+
from PIL import Image
|
9 |
+
import os
|
10 |
+
|
11 |
+
### write access token in secrets
|
12 |
+
token = os.environ.get('HF_TOKEN')
|
13 |
+
|
14 |
+
### choose a paligemma model
|
15 |
+
# See https://huggingface.co/collections/google/paligemma-2-release-67500e1e1dbfdd4dee27ba48
|
16 |
+
model_id = "google/paligemma2-3b-pt-896"
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def model_setup(model_id):
|
20 |
+
"""
|
21 |
+
Sets up the model with @st.cache_resource to cache the function.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_id: one of the paligemma models
|
25 |
+
|
26 |
+
Return:
|
27 |
+
model: from PaliGemmaForConditionalGeneration.from_pretrained
|
28 |
+
processor: from PaliGemmaProcessor.from_pretrained
|
29 |
+
|
30 |
+
"""
|
31 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",token=token).eval()
|
32 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id,token=token)
|
33 |
+
return model,processor
|
34 |
+
|
35 |
+
def run_model(prompt,image):
|
36 |
+
"""
|
37 |
+
Performs inference on user's prompt and image
|
38 |
+
|
39 |
+
Args:
|
40 |
+
prompt: user prompt or task
|
41 |
+
image: user's uploaded image
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
output text
|
45 |
+
"""
|
46 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
|
47 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
48 |
+
with torch.inference_mode():
|
49 |
+
generation = model.generate(**model_inputs, max_new_tokens=1000, do_sample=False)
|
50 |
+
generation = generation[0][input_len:]
|
51 |
+
return processor.decode(generation, skip_special_tokens=True)
|
52 |
+
|
53 |
+
def initialize():
|
54 |
+
"""
|
55 |
+
Initializes chat history
|
56 |
+
"""
|
57 |
+
st.session_state.messages = []
|
58 |
+
|
59 |
+
### load model
|
60 |
+
model,processor = model_setup(model_id)
|
61 |
+
|
62 |
+
### upload a file
|
63 |
+
uploaded_file = st.file_uploader("Choose an image",on_change=initialize)
|
64 |
+
|
65 |
+
if uploaded_file:
|
66 |
+
st.image(uploaded_file)
|
67 |
+
image = Image.open(uploaded_file).convert("RGB")
|
68 |
+
|
69 |
+
# tasks: Caption by default. Accept user prompt only when selected
|
70 |
+
task = st.radio(
|
71 |
+
"Task",
|
72 |
+
tuple(['Caption','OCR','Segment','Enter your prompt']),
|
73 |
+
horizontal=True)
|
74 |
+
|
75 |
+
# display chat messages from history on app rerun
|
76 |
+
for message in st.session_state.messages:
|
77 |
+
with st.chat_message(message["role"]):
|
78 |
+
st.markdown(message["content"])
|
79 |
+
|
80 |
+
if task == 'Enter your prompt':
|
81 |
+
if prompt := st.chat_input("Type here!",key="user_prompt"):
|
82 |
+
# display user message in chat message container
|
83 |
+
with st.chat_message("user"):
|
84 |
+
st.markdown(prompt)
|
85 |
+
|
86 |
+
# add user message to chat history
|
87 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
88 |
+
|
89 |
+
# run the VLM
|
90 |
+
response = run_model(prompt,image)
|
91 |
+
|
92 |
+
# display assistant response in chat message container
|
93 |
+
with st.chat_message("assistant"):
|
94 |
+
st.markdown(response)
|
95 |
+
|
96 |
+
# add assistant response to chat history
|
97 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
98 |
+
else:
|
99 |
+
# display user message in chat message container
|
100 |
+
with st.chat_message("user"):
|
101 |
+
st.markdown(task)
|
102 |
+
|
103 |
+
# add user message to chat history
|
104 |
+
st.session_state.messages.append({"role": "user", "content": task})
|
105 |
+
|
106 |
+
# run the VLM
|
107 |
+
response = run_model(task,image)
|
108 |
+
|
109 |
+
# display assistant response in chat message container
|
110 |
+
with st.chat_message("assistant"):
|
111 |
+
st.markdown(response)
|
112 |
+
|
113 |
+
# add assistant response to chat history
|
114 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
accelerate
|
4 |
+
pillow
|