File size: 1,365 Bytes
f6086aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import json
from transformers import AutoTokenizer, AutoModel
import uvicorn
from fastapi import FastAPI, Request
import datetime
from model import process_image
import torch

tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()


app = FastAPI()
@app.post('/')
async def visual_glm(request: Request):
    json_post_raw = await request.json()
    print("Start to process request")

    json_post = json.dumps(json_post_raw)
    request_data = json.loads(json_post)

    history = request_data.get("history")
    image_encoded = request_data.get("image")
    query = request_data.get("text")
    image_path = process_image(image_encoded)

    with torch.no_grad():    
        result = model.stream_chat(tokenizer, image_path, query, history=history)
    last_result = None
    for value in result:
        last_result = value
    answer = last_result[0]

    if os.path.isfile(image_path):
        os.remove(image_path)
    now = datetime.datetime.now()
    time = now.strftime("%Y-%m-%d %H:%M:%S")
    response = {
        "result": answer,
        "history": history,
        "status": 200,
        "time": time
    }
    return response


if __name__ == "__main__":
   uvicorn.run(app, host='0.0.0.0', port=8080, workers=1)