|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.utils.checkpoint import checkpoint |
|
|
import torch.nn.functional as F |
|
|
import collections.abc |
|
|
from itertools import repeat |
|
|
|
|
|
from functools import partial |
|
|
from typing import Any, Optional, Tuple |
|
|
|
|
|
from einops import rearrange |
|
|
|
|
|
|
|
|
def _ntuple(n): |
|
|
|
|
|
def parse(x): |
|
|
if isinstance(x, collections.abc.Iterable): |
|
|
return x |
|
|
return tuple(repeat(x, n)) |
|
|
|
|
|
return parse |
|
|
|
|
|
|
|
|
to_1tuple = _ntuple(1) |
|
|
to_2tuple = _ntuple(2) |
|
|
to_3tuple = _ntuple(3) |
|
|
to_4tuple = _ntuple(4) |
|
|
to_ntuple = _ntuple |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
|
|
|
|
|
|
def norm_cdf(x): |
|
|
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
|
warnings.warn( |
|
|
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' |
|
|
'The distribution of values may be incorrect.', |
|
|
stacklevel=2) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
|
|
|
|
low = norm_cdf((a - mean) / std) |
|
|
up = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
|
|
|
|
tensor.uniform_(2 * low - 1, 2 * up - 1) |
|
|
|
|
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
|
tensor.add_(mean) |
|
|
|
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
|
return tensor |
|
|
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
|
normal distribution. |
|
|
|
|
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py |
|
|
|
|
|
The values are effectively drawn from the |
|
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
|
with values outside :math:`[a, b]` redrawn until they are within |
|
|
the bounds. The method used for generating the random values works |
|
|
best when :math:`a \leq \text{mean} \leq b`. |
|
|
|
|
|
Args: |
|
|
tensor: an n-dimensional `torch.Tensor` |
|
|
mean: the mean of the normal distribution |
|
|
std: the standard deviation of the normal distribution |
|
|
a: the minimum cutoff value |
|
|
b: the maximum cutoff value |
|
|
|
|
|
Examples: |
|
|
>>> w = torch.empty(3, 5) |
|
|
>>> nn.init.trunc_normal_(w) |
|
|
""" |
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def init_t_xy(end_x: int, end_y: int, zero_center=False): |
|
|
t = torch.arange(end_x * end_y, dtype=torch.float32) |
|
|
t_x = (t % end_x).float() |
|
|
t_y = torch.div(t, end_x, rounding_mode='floor').float() |
|
|
|
|
|
return t_x, t_y |
|
|
|
|
|
def init_random_2d_freqs(head_dim: int, num_heads: int, theta: float = 10.0, rotate: bool = True): |
|
|
freqs_x = [] |
|
|
freqs_y = [] |
|
|
theta = theta |
|
|
mag = 1 / (theta ** (torch.arange(0, head_dim, 4)[: (head_dim // 4)].float() / head_dim)) |
|
|
for i in range(num_heads): |
|
|
angles = torch.rand(1) * 2 * torch.pi if rotate else torch.zeros(1) |
|
|
fx = torch.cat([mag * torch.cos(angles), mag * torch.cos(torch.pi/2 + angles)], dim=-1) |
|
|
fy = torch.cat([mag * torch.sin(angles), mag * torch.sin(torch.pi/2 + angles)], dim=-1) |
|
|
freqs_x.append(fx) |
|
|
freqs_y.append(fy) |
|
|
freqs_x = torch.stack(freqs_x, dim=0) |
|
|
freqs_y = torch.stack(freqs_y, dim=0) |
|
|
freqs = torch.stack([freqs_x, freqs_y], dim=0) |
|
|
return freqs |
|
|
|
|
|
def compute_cis(freqs, t_x, t_y): |
|
|
N = t_x.shape[0] |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
|
freqs_x = (t_x.unsqueeze(-1) @ freqs[0].unsqueeze(-2)) |
|
|
freqs_y = (t_y.unsqueeze(-1) @ freqs[1].unsqueeze(-2)) |
|
|
freqs_cis = torch.polar(torch.ones_like(freqs_x), freqs_x + freqs_y) |
|
|
|
|
|
return freqs_cis |
|
|
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
|
ndim = x.ndim |
|
|
assert 0 <= 1 < ndim |
|
|
|
|
|
|
|
|
if freqs_cis.shape == (x.shape[-2], x.shape[-1]): |
|
|
shape = [d if i >= ndim-2 else 1 for i, d in enumerate(x.shape)] |
|
|
elif freqs_cis.shape == (x.shape[-3], x.shape[-2], x.shape[-1]): |
|
|
shape = [d if i >= ndim-3 else 1 for i, d in enumerate(x.shape)] |
|
|
|
|
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_emb( |
|
|
xq: torch.Tensor, |
|
|
xk: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
|
|
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
|
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) |
|
|
|
|
|
def apply_rotary_emb_single(x, freqs_cis): |
|
|
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) |
|
|
seq_len = x_.shape[2] |
|
|
freqs_cis = freqs_cis[:, :seq_len, :] |
|
|
freqs_cis = freqs_cis.unsqueeze(0).expand_as(x_) |
|
|
x_out = torch.view_as_real(x_ * freqs_cis).flatten(3) |
|
|
return x_out.type_as(x).to(x.device) |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
|
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py |
|
|
""" |
|
|
if drop_prob == 0. or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) |
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
|
random_tensor.floor_() |
|
|
output = x.div(keep_prob) * random_tensor |
|
|
return output |
|
|
|
|
|
|
|
|
class DropPath(nn.Module): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
|
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py |
|
|
""" |
|
|
|
|
|
def __init__(self, drop_prob=None): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
|
"""Channel attention used in RCAN. |
|
|
Args: |
|
|
num_feat (int): Channel number of intermediate features. |
|
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
|
""" |
|
|
|
|
|
def __init__(self, num_feat, squeeze_factor=16): |
|
|
super(ChannelAttention, self).__init__() |
|
|
self.attention = nn.Sequential( |
|
|
nn.AdaptiveAvgPool2d(1), |
|
|
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), |
|
|
nn.Sigmoid()) |
|
|
|
|
|
def forward(self, x): |
|
|
y = self.attention(x) |
|
|
return x * y |
|
|
|
|
|
|
|
|
class CAB(nn.Module): |
|
|
|
|
|
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): |
|
|
super(CAB, self).__init__() |
|
|
|
|
|
self.cab = nn.Sequential( |
|
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), |
|
|
nn.GELU(), |
|
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), |
|
|
ChannelAttention(num_feat, squeeze_factor) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.cab(x) |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def window_partition(x, window_size): |
|
|
""" |
|
|
Args: |
|
|
x: (b, h, w, c) |
|
|
window_size (int): window size |
|
|
|
|
|
Returns: |
|
|
windows: (num_windows*b, window_size, window_size, c) |
|
|
""" |
|
|
b, h, w, c = x.shape |
|
|
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) |
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) |
|
|
return windows |
|
|
|
|
|
|
|
|
def window_reverse(windows, window_size, h, w): |
|
|
""" |
|
|
Args: |
|
|
windows: (num_windows*b, window_size, window_size, c) |
|
|
window_size (int): Window size |
|
|
h (int): Height of image |
|
|
w (int): Width of image |
|
|
|
|
|
Returns: |
|
|
x: (b, h, w, c) |
|
|
""" |
|
|
b = int(windows.shape[0] / (h * w / window_size / window_size)) |
|
|
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1) |
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) |
|
|
return x |
|
|
|
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
|
It supports both of shifted and non-shifted window. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
window_size (tuple[int]): The height and width of the window. |
|
|
num_heads (int): Number of attention heads. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
|
""" |
|
|
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., rope_mixed = True, rope_theta=10.0): |
|
|
|
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
|
|
|
self.rope_mixed = rope_mixed |
|
|
t_x, t_y = init_t_xy(end_x=self.window_size[1], end_y=self.window_size[0]) |
|
|
self.register_buffer('rope_t_x', t_x) |
|
|
self.register_buffer('rope_t_y', t_y) |
|
|
|
|
|
freqs = init_random_2d_freqs( |
|
|
head_dim=self.dim // self.num_heads, num_heads=self.num_heads, theta=rope_theta, |
|
|
rotate=self.rope_mixed |
|
|
) |
|
|
if self.rope_mixed: |
|
|
self.rope_freqs = nn.Parameter(freqs, requires_grad=True) |
|
|
else: |
|
|
self.register_buffer('rope_freqs', freqs) |
|
|
freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y) |
|
|
self.rope_freqs_cis = freqs_cis |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
|
|
|
def forward(self, x, rpi, mask=None): |
|
|
""" |
|
|
Args: |
|
|
x: input features with shape of (num_windows*b, n, c) |
|
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
|
""" |
|
|
b_, n, c = x.shape |
|
|
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4).contiguous() |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
|
|
|
if self.rope_mixed: |
|
|
freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y) |
|
|
else: |
|
|
freqs_cis = self.rope_freqs_cis.to(x.device) |
|
|
q, k = apply_rotary_emb(q, k, freqs_cis) |
|
|
|
|
|
|
|
|
attn = F.scaled_dot_product_attention(q, k, v) |
|
|
|
|
|
attn = attn.transpose(1, 2).reshape(b_, n, c) |
|
|
|
|
|
x = self.proj(attn) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class HAB(nn.Module): |
|
|
r""" Hybrid Attention Block. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
input_resolution (tuple[int]): Input resolution. |
|
|
num_heads (int): Number of attention heads. |
|
|
window_size (int): Window size. |
|
|
shift_size (int): Shift size for SW-MSA. |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
dim, |
|
|
input_resolution, |
|
|
num_heads, |
|
|
window_size=7, |
|
|
shift_size=0, |
|
|
compress_ratio=3, |
|
|
squeeze_factor=30, |
|
|
conv_scale=0.01, |
|
|
mlp_ratio=4., |
|
|
qkv_bias=True, |
|
|
qk_scale=None, |
|
|
drop=0., |
|
|
attn_drop=0., |
|
|
drop_path=0., |
|
|
act_layer=nn.GELU, |
|
|
norm_layer=nn.LayerNorm, |
|
|
rope_mixed = True, rope_theta=10.0): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.num_heads = num_heads |
|
|
self.window_size = window_size |
|
|
self.shift_size = shift_size |
|
|
self.mlp_ratio = mlp_ratio |
|
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
|
|
self.shift_size = 0 |
|
|
self.window_size = min(self.input_resolution) |
|
|
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size' |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = WindowAttention( |
|
|
dim, |
|
|
window_size=to_2tuple(self.window_size), |
|
|
num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
attn_drop=attn_drop, |
|
|
proj_drop=drop, |
|
|
rope_mixed = rope_mixed, rope_theta=rope_theta) |
|
|
|
|
|
self.conv_scale = conv_scale |
|
|
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
def forward(self, x, x_size, rpi_sa, attn_mask): |
|
|
h, w = x_size |
|
|
b, _, c = x.shape |
|
|
|
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(b, h, w, c) |
|
|
|
|
|
|
|
|
conv_x = self.conv_block(x.permute(0, 3, 1, 2).contiguous()) |
|
|
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
attn_mask = attn_mask |
|
|
else: |
|
|
shifted_x = x |
|
|
attn_mask = None |
|
|
|
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, c) |
|
|
|
|
|
|
|
|
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) |
|
|
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) |
|
|
shifted_x = window_reverse(attn_windows, self.window_size, h, w) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
attn_x = shifted_x |
|
|
attn_x = attn_x.view(b, h * w, c) |
|
|
|
|
|
|
|
|
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale |
|
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class PatchMerging(nn.Module): |
|
|
r""" Patch Merging Layer. |
|
|
|
|
|
Args: |
|
|
input_resolution (tuple[int]): Resolution of input feature. |
|
|
dim (int): Number of input channels. |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
""" |
|
|
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.input_resolution = input_resolution |
|
|
self.dim = dim |
|
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
|
self.norm = norm_layer(4 * dim) |
|
|
|
|
|
def forward(self, x): |
|
|
""" |
|
|
x: b, h*w, c |
|
|
""" |
|
|
h, w = self.input_resolution |
|
|
b, seq_len, c = x.shape |
|
|
assert seq_len == h * w, 'input feature has wrong size' |
|
|
assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.' |
|
|
|
|
|
x = x.view(b, h, w, c) |
|
|
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
|
x1 = x[:, 1::2, 0::2, :] |
|
|
x2 = x[:, 0::2, 1::2, :] |
|
|
x3 = x[:, 1::2, 1::2, :] |
|
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
|
x = x.view(b, -1, 4 * c) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.reduction(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class OCAB(nn.Module): |
|
|
|
|
|
|
|
|
def __init__(self, dim, |
|
|
input_resolution, |
|
|
window_size, |
|
|
overlap_ratio, |
|
|
num_heads, |
|
|
qkv_bias=True, |
|
|
qk_scale=None, |
|
|
mlp_ratio=2, |
|
|
norm_layer=nn.LayerNorm, |
|
|
rope_mixed = True, rope_theta = 10.0 |
|
|
): |
|
|
|
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.rope_mixed = rope_mixed |
|
|
|
|
|
self.overlap_win_size = int(window_size * overlap_ratio) + window_size |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2) |
|
|
|
|
|
t_x, t_y = init_t_xy(end_x=max(self.window_size, self.overlap_win_size), end_y=max(self.window_size, self.overlap_win_size)) |
|
|
self.register_buffer('rope_t_x', t_x) |
|
|
self.register_buffer('rope_t_y', t_y) |
|
|
|
|
|
freqs = init_random_2d_freqs( |
|
|
head_dim=self.dim // self.num_heads, num_heads=self.num_heads, theta=rope_theta, |
|
|
rotate=self.rope_mixed |
|
|
) |
|
|
if self.rope_mixed: |
|
|
self.rope_freqs = nn.Parameter(freqs, requires_grad=True) |
|
|
else: |
|
|
self.register_buffer('rope_freqs', freqs) |
|
|
freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y) |
|
|
self.rope_freqs_cis = freqs_cis |
|
|
|
|
|
|
|
|
self.proj = nn.Linear(dim,dim) |
|
|
|
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU) |
|
|
|
|
|
def forward(self, x, x_size, rpi): |
|
|
h, w = x_size |
|
|
b, _, c = x.shape |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(b, h, w, c) |
|
|
|
|
|
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2).contiguous() |
|
|
q = qkv[0].permute(0, 2, 3, 1).contiguous() |
|
|
kv = torch.cat((qkv[1], qkv[2]), dim=1) |
|
|
|
|
|
|
|
|
q_windows = window_partition(q, self.window_size) |
|
|
q_windows = q_windows.view(-1, self.window_size * self.window_size, c) |
|
|
|
|
|
kv_windows = self.unfold(kv) |
|
|
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() |
|
|
k_windows, v_windows = kv_windows[0], kv_windows[1] |
|
|
|
|
|
b_, nq, _ = q_windows.shape |
|
|
_, n, _ = k_windows.shape |
|
|
|
|
|
d = self.dim // self.num_heads |
|
|
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3).contiguous() |
|
|
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3).contiguous() |
|
|
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
|
|
|
if self.rope_mixed: |
|
|
freqs_cis = compute_cis(self.rope_freqs, self.rope_t_x, self.rope_t_y) |
|
|
else: |
|
|
freqs_cis = self.rope_freqs_cis.to(x.device) |
|
|
q = apply_rotary_emb_single(q, freqs_cis) |
|
|
k = apply_rotary_emb_single(k, freqs_cis) |
|
|
|
|
|
|
|
|
attn = F.scaled_dot_product_attention(q, k, v) |
|
|
attn_windows = attn.transpose(1, 2).reshape(b_, nq, self.dim) |
|
|
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim) |
|
|
x = window_reverse(attn_windows, self.window_size, h, w) |
|
|
x = x.view(b, h * w, self.dim) |
|
|
|
|
|
x = self.proj(x) + shortcut |
|
|
|
|
|
x = x + self.mlp(self.norm2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class AttenBlocks(nn.Module): |
|
|
""" A series of attention blocks for one RHAG. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
input_resolution (tuple[int]): Input resolution. |
|
|
depth (int): Number of blocks. |
|
|
num_heads (int): Number of attention heads. |
|
|
window_size (int): Local window size. |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
dim, |
|
|
input_resolution, |
|
|
depth, |
|
|
num_heads, |
|
|
window_size, |
|
|
compress_ratio, |
|
|
squeeze_factor, |
|
|
conv_scale, |
|
|
overlap_ratio, |
|
|
mlp_ratio=4., |
|
|
qkv_bias=True, |
|
|
qk_scale=None, |
|
|
drop=0., |
|
|
attn_drop=0., |
|
|
drop_path=0., |
|
|
norm_layer=nn.LayerNorm, |
|
|
downsample=None, |
|
|
use_checkpoint=False, |
|
|
rope_mixed = True, rope_theta=10.0): |
|
|
|
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.depth = depth |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
|
HAB( |
|
|
dim=dim, |
|
|
input_resolution=input_resolution, |
|
|
num_heads=num_heads, |
|
|
window_size=window_size, |
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
|
compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, |
|
|
mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
drop=drop, |
|
|
attn_drop=attn_drop, |
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
|
norm_layer=norm_layer, |
|
|
rope_mixed = rope_mixed, rope_theta=rope_theta) for i in range(depth) |
|
|
]) |
|
|
|
|
|
|
|
|
self.overlap_attn = OCAB( |
|
|
dim=dim, |
|
|
input_resolution=input_resolution, |
|
|
window_size=window_size, |
|
|
overlap_ratio=overlap_ratio, |
|
|
num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
mlp_ratio=mlp_ratio, |
|
|
norm_layer=norm_layer, |
|
|
rope_mixed = rope_mixed, rope_theta = rope_theta) |
|
|
|
|
|
|
|
|
|
|
|
if downsample is not None: |
|
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
|
else: |
|
|
self.downsample = None |
|
|
|
|
|
def forward(self, x, x_size, params): |
|
|
for blk in self.blocks: |
|
|
x = blk(x, x_size, params['rpi_sa'], params['attn_mask']) |
|
|
|
|
|
|
|
|
x = self.overlap_attn(x, x_size, params['rpi_oca']) |
|
|
|
|
|
|
|
|
if self.downsample is not None: |
|
|
x = self.downsample(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class RHAG(nn.Module): |
|
|
"""Residual Hybrid Attention Group (RHAG). |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
input_resolution (tuple[int]): Input resolution. |
|
|
depth (int): Number of blocks. |
|
|
num_heads (int): Number of attention heads. |
|
|
window_size (int): Local window size. |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
|
img_size: Input image size. |
|
|
patch_size: Patch size. |
|
|
resi_connection: The convolutional block before residual connection. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
dim, |
|
|
input_resolution, |
|
|
depth, |
|
|
num_heads, |
|
|
window_size, |
|
|
compress_ratio, |
|
|
squeeze_factor, |
|
|
conv_scale, |
|
|
overlap_ratio, |
|
|
mlp_ratio=4., |
|
|
qkv_bias=True, |
|
|
qk_scale=None, |
|
|
drop=0., |
|
|
attn_drop=0., |
|
|
drop_path=0., |
|
|
norm_layer=nn.LayerNorm, |
|
|
downsample=None, |
|
|
use_checkpoint=False, |
|
|
img_size=224, |
|
|
patch_size=4, |
|
|
resi_connection='1conv', |
|
|
rope_mixed = True, rope_theta=10.0): |
|
|
super(RHAG, self).__init__() |
|
|
|
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
|
|
|
self.residual_group = AttenBlocks( |
|
|
dim=dim, |
|
|
input_resolution=input_resolution, |
|
|
depth=depth, |
|
|
num_heads=num_heads, |
|
|
window_size=window_size, |
|
|
compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, |
|
|
overlap_ratio=overlap_ratio, |
|
|
mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
drop=drop, |
|
|
attn_drop=attn_drop, |
|
|
drop_path=drop_path, |
|
|
norm_layer=norm_layer, |
|
|
downsample=downsample, |
|
|
use_checkpoint=use_checkpoint, |
|
|
rope_mixed = rope_mixed, rope_theta=rope_theta) |
|
|
|
|
|
if resi_connection == '1conv': |
|
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
|
elif resi_connection == 'identity': |
|
|
self.conv = nn.Identity() |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
|
|
def forward(self, x, x_size, params): |
|
|
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
r""" Image to Patch Embedding |
|
|
|
|
|
Args: |
|
|
img_size (int): Image size. Default: 224. |
|
|
patch_size (int): Patch token size. Default: 4. |
|
|
in_chans (int): Number of input image channels. Default: 3. |
|
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
|
""" |
|
|
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
if norm_layer is not None: |
|
|
self.norm = norm_layer(embed_dim) |
|
|
else: |
|
|
self.norm = None |
|
|
|
|
|
def forward(self, x): |
|
|
x = x.flatten(2).transpose(1, 2) |
|
|
if self.norm is not None: |
|
|
x = self.norm(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
|
r""" Image to Patch Unembedding |
|
|
|
|
|
Args: |
|
|
img_size (int): Image size. Default: 224. |
|
|
patch_size (int): Patch token size. Default: 4. |
|
|
in_chans (int): Number of input image channels. Default: 3. |
|
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
|
""" |
|
|
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
def forward(self, x, x_size): |
|
|
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) |
|
|
return x |
|
|
|
|
|
|
|
|
class Upsample(nn.Sequential): |
|
|
"""Upsample module. |
|
|
|
|
|
Args: |
|
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
|
num_feat (int): Channel number of intermediate features. |
|
|
""" |
|
|
|
|
|
def __init__(self, scale, num_feat): |
|
|
m = [] |
|
|
if (scale & (scale - 1)) == 0: |
|
|
for _ in range(int(math.log(scale, 2))): |
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(2)) |
|
|
elif scale == 3: |
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(3)) |
|
|
else: |
|
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') |
|
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HATNOUP_ROPE_AMP(nn.Module): |
|
|
def __init__(self, |
|
|
img_size=64, |
|
|
patch_size=1, |
|
|
in_chans=3, |
|
|
embed_dim=192, |
|
|
depths=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), |
|
|
num_heads=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), |
|
|
window_size=16, |
|
|
compress_ratio=3, |
|
|
squeeze_factor=32, |
|
|
conv_scale=0.01, |
|
|
overlap_ratio=0.5, |
|
|
mlp_ratio=2, |
|
|
qkv_bias=True, |
|
|
qk_scale=None, |
|
|
drop_rate=0., |
|
|
attn_drop_rate=0., |
|
|
drop_path_rate=0.1, |
|
|
norm_layer=nn.LayerNorm, |
|
|
ape=False, |
|
|
patch_norm=True, |
|
|
use_checkpoint=False, |
|
|
upscale=4, |
|
|
img_range=1., |
|
|
upsampler='pixelshuffle', |
|
|
resi_connection='1conv', |
|
|
rope_mixed = True, |
|
|
rope_theta=10.0, |
|
|
**kwargs): |
|
|
super(HATNOUP_ROPE_AMP, self).__init__() |
|
|
|
|
|
self.window_size = window_size |
|
|
self.shift_size = window_size // 2 |
|
|
self.overlap_ratio = overlap_ratio |
|
|
|
|
|
num_in_ch = in_chans |
|
|
num_out_ch = in_chans |
|
|
num_feat = 64 |
|
|
self.img_range = img_range |
|
|
if in_chans == 3: |
|
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
|
else: |
|
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
|
self.upscale = upscale |
|
|
self.upsampler = upsampler |
|
|
|
|
|
|
|
|
relative_position_index_SA = self.calculate_rpi_sa() |
|
|
relative_position_index_OCA = self.calculate_rpi_oca() |
|
|
self.register_buffer('relative_position_index_SA', relative_position_index_SA) |
|
|
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA) |
|
|
|
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
|
|
|
self.num_layers = len(depths) |
|
|
self.embed_dim = embed_dim |
|
|
self.ape = ape |
|
|
self.patch_norm = patch_norm |
|
|
self.num_features = embed_dim |
|
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=img_size, |
|
|
patch_size=patch_size, |
|
|
in_chans=embed_dim, |
|
|
embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
num_patches = self.patch_embed.num_patches |
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
|
img_size=img_size, |
|
|
patch_size=patch_size, |
|
|
in_chans=embed_dim, |
|
|
embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
|
|
|
if self.ape: |
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for i_layer in range(self.num_layers): |
|
|
layer = RHAG( |
|
|
dim=embed_dim, |
|
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
|
depth=depths[i_layer], |
|
|
num_heads=num_heads[i_layer], |
|
|
window_size=window_size, |
|
|
compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, |
|
|
overlap_ratio=overlap_ratio, |
|
|
mlp_ratio=self.mlp_ratio, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
drop=drop_rate, |
|
|
attn_drop=attn_drop_rate, |
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
|
norm_layer=norm_layer, |
|
|
downsample=None, |
|
|
use_checkpoint=use_checkpoint, |
|
|
img_size=img_size, |
|
|
patch_size=patch_size, |
|
|
resi_connection=resi_connection, |
|
|
rope_mixed = rope_mixed, rope_theta=rope_theta) |
|
|
self.layers.append(layer) |
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
|
|
|
if resi_connection == '1conv': |
|
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
|
elif resi_connection == 'identity': |
|
|
self.conv_after_body = nn.Identity() |
|
|
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
|
|
self.conv_before_upsample = nn.Sequential( |
|
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) |
|
|
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def calculate_rpi_sa(self): |
|
|
|
|
|
coords_h = torch.arange(self.window_size) |
|
|
coords_w = torch.arange(self.window_size) |
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_flatten = torch.flatten(coords, 1) |
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += self.window_size - 1 |
|
|
relative_coords[:, :, 1] += self.window_size - 1 |
|
|
relative_coords[:, :, 0] *= 2 * self.window_size - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
return relative_position_index |
|
|
|
|
|
def calculate_rpi_oca(self): |
|
|
|
|
|
window_size_ori = self.window_size |
|
|
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size) |
|
|
|
|
|
coords_h = torch.arange(window_size_ori) |
|
|
coords_w = torch.arange(window_size_ori) |
|
|
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_ori_flatten = torch.flatten(coords_ori, 1) |
|
|
|
|
|
coords_h = torch.arange(window_size_ext) |
|
|
coords_w = torch.arange(window_size_ext) |
|
|
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_ext_flatten = torch.flatten(coords_ext, 1) |
|
|
|
|
|
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] |
|
|
|
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1 |
|
|
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1 |
|
|
|
|
|
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
return relative_position_index |
|
|
|
|
|
def calculate_mask(self, x_size): |
|
|
|
|
|
h, w = x_size |
|
|
img_mask = torch.zeros((1, h, w, 1)) |
|
|
h_slices = (slice(0, -self.window_size), slice(-self.window_size, |
|
|
-self.shift_size), slice(-self.shift_size, None)) |
|
|
w_slices = (slice(0, -self.window_size), slice(-self.window_size, |
|
|
-self.shift_size), slice(-self.shift_size, None)) |
|
|
cnt = 0 |
|
|
for h in h_slices: |
|
|
for w in w_slices: |
|
|
img_mask[:, h, w, :] = cnt |
|
|
cnt += 1 |
|
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
|
|
return attn_mask |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {'absolute_pos_embed'} |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay_keywords(self): |
|
|
return {'relative_position_bias_table'} |
|
|
|
|
|
def forward_features(self, x): |
|
|
x_size = (x.shape[2], x.shape[3]) |
|
|
|
|
|
|
|
|
|
|
|
attn_mask = self.calculate_mask(x_size).to(x.device) |
|
|
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA} |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
if self.ape: |
|
|
x = x + self.absolute_pos_embed |
|
|
x = self.pos_drop(x) |
|
|
|
|
|
for layer in self.layers: |
|
|
x = layer(x, x_size, params) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.patch_unembed(x, x_size) |
|
|
|
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
|
|
x = self.conv_first(x) |
|
|
if self.use_checkpoint: |
|
|
x = self.conv_after_body(checkpoint(self.forward_features, x)) + x |
|
|
else: |
|
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
|
x = self.conv_before_upsample(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
srcs = torch.randn(8, 3, 64, 64).cuda() |
|
|
encoder = HATNOUP_ROPE_AMP(upscale=4, in_chans=3, img_size=64, window_size=16, compress_ratio=3, squeeze_factor=32, conv_scale=0.01, overlap_ratio=0.5, |
|
|
img_range=1., |
|
|
depths=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), |
|
|
embed_dim=192, |
|
|
num_heads=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), |
|
|
mlp_ratio=2, |
|
|
upsampler='pixelshuffle', |
|
|
resi_connection='1conv', |
|
|
use_checkpoint=False).cuda() |
|
|
feature = encoder(srcs) |
|
|
pass |