File size: 14,068 Bytes
909940e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torch.nn.functional as F
import math

from utils.gaussian_splatting import generate_2D_gaussian_splatting_step, generate_2D_gaussian_splatting_step_buffer


### If the GPU memory is limited, please use the following code to do tiling process for input LR image
# def split_and_joint_image(lq, scale_factor, model_g, model_fea2gs, scale_modify, split_size = 48,
#                                             overlap_size = 8, 
#                                             crop_size = 4,
#                                             default_step_size = 1.2, mode = 'scale_modify',
#                                             cuda_rendering = True,
#                                             if_dmax = False,
#                                             dmax_mode = 'fix',
#                                             dmax = 0.1):
#     h_lq, w_lq = lq.shape[-2:]

#     assert overlap_size > 0 and overlap_size < split_size // 2, f"overlap size is wrong"

#     tile_nums_h = math.ceil((h_lq - overlap_size) / (split_size - overlap_size))
#     tile_nums_w = math.ceil((w_lq - overlap_size) / (split_size - overlap_size))

#     pad_h_lq = tile_nums_h * (split_size - overlap_size) + overlap_size - h_lq
#     pad_w_lq = tile_nums_w * (split_size - overlap_size) + overlap_size - w_lq

#     lq_pad = F.pad(input=lq, pad=(0, pad_w_lq, 0, pad_h_lq), mode='reflect')

#     split_size_sr = math.ceil(split_size * scale_factor)
#     sr_tile_list = []
#     for h_num in range(tile_nums_h):
#         for w_num in range(tile_nums_w):
#             tile_lq_position_start_h = h_num * (split_size - overlap_size)
#             tile_lq_position_start_w = w_num * (split_size - overlap_size)
#             tile_lq_position_end_h = tile_lq_position_start_h + split_size
#             tile_lq_position_end_w = tile_lq_position_start_w + split_size

#             input_tile = lq_pad[:,:, tile_lq_position_start_h:tile_lq_position_end_h, tile_lq_position_start_w:tile_lq_position_end_w]

#             model_g_output = model_g(input_tile)
            
#             scale_vector = scale_modify[0].unsqueeze(0).to(model_g_output.device)
#             batch_gs_parameters = model_fea2gs(model_g_output, scale_vector)

#             gs_parameters = batch_gs_parameters[0, :]
#             b_output = generate_2D_gaussian_splatting_step(sr_size=torch.tensor([split_size_sr, split_size_sr]), gs_parameters=gs_parameters,
#                                                            lq=input_tile[0, :], scale=scale_factor, sample_coords=None,
#                                                            scale_modify = scale_modify,
#                                                            default_step_size = default_step_size, mode = mode,
#                                                            cuda_rendering = cuda_rendering,
#                                                            if_dmax = if_dmax,
#                                                            dmax_mode = dmax_mode,
#                                                            dmax = dmax)
#             sr_tile_list.append(b_output.unsqueeze(0))

#     tile_sr_h = sr_tile_list[0].shape[2]
#     tile_sr_w = sr_tile_list[0].shape[3]

#     assert tile_sr_w == split_size_sr and tile_sr_h == split_size_sr, \
#         f'tile_sr_h-{tile_sr_w}, tile_sr_w-{tile_sr_w}, split_size_sr-{split_size_sr} is not the same'

#     overlap_sr = math.ceil(overlap_size * scale_factor)

#     sr_pad = torch.zeros(lq.shape[0], lq.shape[1],
#                          math.ceil(lq_pad.shape[2] * scale_factor),
#                          math.ceil(lq_pad.shape[3] * scale_factor),
#                          device=lq.device)

#     idx = 0
#     for h_num in range(tile_nums_h):
#         for w_num in range(tile_nums_w):
#             tile_sr_position_start_w = w_num * (split_size_sr - overlap_sr)
#             tile_sr_position_end_w = tile_sr_position_start_w + split_size_sr
#             tile_sr_position_start_h = h_num * (split_size_sr - overlap_sr)
#             tile_sr_position_end_h = tile_sr_position_start_h + split_size_sr
#             if h_num == 0 and w_num == 0:
#                 sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
#                 tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx]
#             elif h_num == 0 and w_num !=0:
#                 sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
#                 tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,:,crop_size:]
#             elif h_num != 0 and w_num ==0:
#                 sr_pad[:, :, tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
#                 tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,:]
#             else:
#                 sr_pad[:,:,tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
#                 tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,crop_size:]
#             idx = idx + 1

#     print(f"sr_pad shape is {sr_pad.shape}")

#     # sr_final = sr_pad[:,:, 0:math.ceil(h_lq * scale_factor), 0: math.ceil(w_lq * scale_factor)]
#     sr_final = sr_pad

#     return sr_final


def split_and_joint_image(lq, scale_factor, split_size,
                                            overlap_size, model_g, model_fea2gs,
                                            scale_modify, crop_size = 2,
                                            default_step_size = 1.2, mode = 'scale_modify',
                                            cuda_rendering = True,
                                            if_dmax = False,
                                            dmax_mode = 'fix',
                                            dmax = 25):
    h_lq, w_lq = lq.shape[-2:]

    # assert h_lq > split_size, f'h_lq-{h_lq} should be larger than split_size-{split_size}, please do not use tile_process, or decrease the split_size'
    # assert w_lq > split_size, f'w_lq-{w_lq} should be larger than split_size-{split_size}, please do not use tile_process, or decrease the split_size'

    assert overlap_size > 0 and overlap_size < split_size // 2, f"overlap size is wrong"

    tile_nums_h = math.ceil((h_lq - overlap_size) / (split_size - overlap_size))
    tile_nums_w = math.ceil((w_lq - overlap_size) / (split_size - overlap_size))

    pad_h_lq = tile_nums_h * (split_size - overlap_size) + overlap_size - h_lq
    pad_w_lq = tile_nums_w * (split_size - overlap_size) + overlap_size - w_lq

    assert pad_h_lq < h_lq, f'pad_h_lq-{pad_h_lq} should be smaller than h_lq-{h_lq}, please decrease the split_size-{split_size}'
    assert pad_w_lq < w_lq, f'pad_w_lq-{pad_w_lq} should be smaller than w_lq-{w_lq}, please decrease the split_size-{split_size}'

    lq_pad = F.pad(input=lq, pad=(0, pad_w_lq, 0, pad_h_lq), mode='reflect')
    # lq_pad = F.pad(input=lq, pad=(0, pad_w_lq, 0, pad_h_lq), mode='constant', value=0)

    split_size_sr = math.ceil(split_size * scale_factor)
    sr_tile_list = []
    for h_num in range(tile_nums_h):
        for w_num in range(tile_nums_w):
            tile_lq_position_start_h = h_num * (split_size - overlap_size)
            tile_lq_position_start_w = w_num * (split_size - overlap_size)
            tile_lq_position_end_h = tile_lq_position_start_h + split_size
            tile_lq_position_end_w = tile_lq_position_start_w + split_size

            input_tile = lq_pad[:,:, tile_lq_position_start_h:tile_lq_position_end_h, tile_lq_position_start_w:tile_lq_position_end_w]

            model_g_output = model_g(input_tile)
            
            scale_vector = scale_modify[0].unsqueeze(0).to(model_g_output.device)
            batch_gs_parameters = model_fea2gs(model_g_output, scale_vector)


            gs_parameters = batch_gs_parameters[0, :]
            b_output = generate_2D_gaussian_splatting_step(sr_size=torch.tensor([split_size_sr, split_size_sr]), gs_parameters=gs_parameters,
                                                           scale=scale_factor, sample_coords=None,
                                                           scale_modify = scale_modify,
                                                           default_step_size = default_step_size, mode = mode,
                                                           cuda_rendering = cuda_rendering,
                                                           if_dmax = if_dmax,
                                                           dmax_mode = dmax_mode,
                                                           dmax = dmax)
            sr_tile_list.append(b_output.unsqueeze(0))

    tile_sr_h = sr_tile_list[0].shape[2]
    tile_sr_w = sr_tile_list[0].shape[3]

    assert tile_sr_w == split_size_sr and tile_sr_h == split_size_sr, \
        f'tile_sr_h-{tile_sr_w}, tile_sr_w-{tile_sr_w}, split_size_sr-{split_size_sr} is not the same'

    overlap_sr = math.ceil(overlap_size * scale_factor)

    sr_pad = torch.zeros(lq.shape[0], lq.shape[1],
                         (tile_nums_h - 1) * (split_size_sr - overlap_sr) + split_size_sr,
                         (tile_nums_w - 1) * (split_size_sr - overlap_sr) + split_size_sr,
                         device=lq.device)

    idx = 0

    if scale_factor != int(scale_factor):
        for h_num in range(tile_nums_h):
            for w_num in range(tile_nums_w):
                tile_sr_position_start_w = w_num * (split_size_sr - overlap_sr)
                tile_sr_position_end_w = tile_sr_position_start_w + split_size_sr
                tile_sr_position_start_h = h_num * (split_size_sr - overlap_sr)
                tile_sr_position_end_h = tile_sr_position_start_h + split_size_sr
                if h_num == 0 and w_num == 0:
                    sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                    tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx]
                elif h_num == 0 and w_num !=0:
                    if w_num != tile_nums_w - 1:
                        sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                        tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,:,crop_size:]
                    else:
                        sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                        tile_sr_position_start_w+crop_size:sr_pad.shape[3]] = sr_tile_list[idx][:,:,:,crop_size:sr_pad.shape[3] - tile_sr_position_start_w]
                elif h_num != 0 and w_num ==0:
                    if h_num != tile_nums_h - 1:
                        sr_pad[:, :, tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
                        tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,:]
                    else:
                        sr_pad[:, :, tile_sr_position_start_h+crop_size:sr_pad.shape[2],
                        tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:sr_pad.shape[2] - tile_sr_position_start_h,:]
                else:
                    if w_num != tile_nums_w - 1 and h_num != tile_nums_h - 1:
                        sr_pad[:,:,tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
                        tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,crop_size:]
                    elif w_num == tile_nums_w - 1 and h_num != tile_nums_h - 1:
                        sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                        tile_sr_position_start_w+crop_size:sr_pad.shape[3]] = sr_tile_list[idx][:,:,:,crop_size:sr_pad.shape[3] - tile_sr_position_start_w]
                    elif w_num != tile_nums_w - 1 and h_num == tile_nums_h - 1:
                        sr_pad[:, :, tile_sr_position_start_h+crop_size:sr_pad.shape[2],
                        tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:sr_pad.shape[2] - tile_sr_position_start_h,:]
                    elif w_num == tile_nums_w - 1 and h_num == tile_nums_h - 1:
                        sr_pad[:,:,tile_sr_position_start_h+crop_size:sr_pad.shape[2],
                        tile_sr_position_start_w+crop_size:sr_pad.shape[3]] = sr_tile_list[idx][:,:,crop_size:sr_pad.shape[2] - tile_sr_position_start_h,crop_size:sr_pad.shape[3] - tile_sr_position_start_w]
                idx = idx + 1
    else:
        for h_num in range(tile_nums_h):
            for w_num in range(tile_nums_w):
                tile_sr_position_start_w = w_num * (split_size_sr - overlap_sr)
                tile_sr_position_end_w = tile_sr_position_start_w + split_size_sr
                tile_sr_position_start_h = h_num * (split_size_sr - overlap_sr)
                tile_sr_position_end_h = tile_sr_position_start_h + split_size_sr
                if h_num == 0 and w_num == 0:
                    sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                    tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx]
                elif h_num == 0 and w_num !=0:
                    sr_pad[:, :, tile_sr_position_start_h:tile_sr_position_end_h,
                    tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,:,crop_size:]
                elif h_num != 0 and w_num ==0:
                    sr_pad[:, :, tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
                    tile_sr_position_start_w:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,:]
                else:
                    sr_pad[:,:,tile_sr_position_start_h+crop_size:tile_sr_position_end_h,
                    tile_sr_position_start_w+crop_size:tile_sr_position_end_w] = sr_tile_list[idx][:,:,crop_size:,crop_size:]
                idx = idx + 1

    print(f"sr_pad shape is {sr_pad.shape}")

    # sr_final = sr_pad[:,:, 0:math.ceil(h_lq * scale_factor), 0: math.ceil(w_lq * scale_factor)]
    sr_final = sr_pad

    return sr_final