File size: 4,958 Bytes
909940e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include <stdio.h>   
#include <cmath>

#define PI 3.1415926536
#define PI2 6.283153072

__global__ void _gs_render_cuda(
        const float *sigmas,
        const float *coords,
        const float *colors,
        float *rendered_img,
	const int s,  // gs num
	const int h, 
	const int w,
	const int c,
	const float dmax
	){

        int curs = blockIdx.x*blockDim.x + threadIdx.x;
	if(curs >= s){
	    return;
	}

	float sigma_x = sigmas[curs*3+0];
	float sigma_y = sigmas[curs*3+1];
	float rho = sigmas[curs*3+2];
        float x = coords[curs*2+0];
        float y = coords[curs*2+1];
        float r = colors[curs*3];
        float g = colors[curs*3+1];
        float b = colors[curs*3+2];

	float negative_half_one_div_one_minus_rho2 = -0.5 / (1-rho*rho);
	float one_div_sigma_x_2 = 1.0 / sigma_x / sigma_x;
	float one_div_sigma_y_2 = 1.0 / sigma_y / sigma_y;
	float two_rho_div_sigma_x_one_div_sigma_y = 2*rho / sigma_x / sigma_y;

	for(int hi=0; hi<h; hi++){
	    float curh_f = 2.0*hi/(h-1) - 1.0;
	    float d_y = curh_f - y;
	    if(d_y > dmax || d_y < -dmax){
                continue;
	    }

	    for(int wi=0; wi<w; wi++){
	        float curw_f = 2.0*wi/(w-1) - 1.0;
	        float d_x = curw_f - x;
	        if(d_x > dmax || d_x < -dmax){
		    continue;
	        }

		float v = one_div_sigma_x_2*d_x*d_x;
		v -= two_rho_div_sigma_x_one_div_sigma_y*d_x*d_y;
		v += one_div_sigma_y_2*d_y*d_y;
		v *= negative_half_one_div_one_minus_rho2;
		v = exp(v);

		atomicAdd(&rendered_img[(hi*w+wi)*c+0], v*r);
		atomicAdd(&rendered_img[(hi*w+wi)*c+1], v*g);
		atomicAdd(&rendered_img[(hi*w+wi)*c+2], v*b);
	    }
	}

}


void _gs_render(
        const float *sigmas,
        const float *coords,
        const float *colors,
        float *rendered_img,
	const int s, 
	const int h, 
	const int w,
	const int c,
	const float dmax
	) {

        int threads=64;
        dim3 grid(int(s/threads)+1);
        dim3 block(threads);
        _gs_render_cuda<<<grid, block>>>(sigmas, coords, colors, rendered_img, s, h, w, c, dmax);
}

__global__ void _gs_render_backward_cuda(
        const float *sigmas,
        const float *coords,
        const float *colors,
        const float *grads,
        float *grads_sigmas,
        float *grads_coords,
        float *grads_colors,
	const int s,  // gs num
	const int h, 
	const int w,
	const int c,
	const float dmax
	){

        int curs = blockIdx.x*blockDim.x + threadIdx.x;
	if(curs >= s){
	    return ;
	}

	// obtain parameters of gs
	float sigma_x = sigmas[curs*3+0];
	float sigma_y = sigmas[curs*3+1];
	float rho = sigmas[curs*3+2];
        float x = coords[curs*2+0];
        float y = coords[curs*2+1];

	//
        float w1 = -0.5 / (1-rho*rho) ;
        float w2 = 1.0 / (sigma_x*sigma_x);
        float w3 = 1.0 / (sigma_x*sigma_y);
        float w4 = 1.0 / (sigma_y*sigma_y);
	float od_sx = 1.0 / sigma_x;
	float od_sy = 1.0 / sigma_y;

        // init 
	for(int hi = 0; hi < h; hi++){
	    for( int wi=0; wi < w; wi++){

	        float curw_f = 2.0*wi/(w-1) - 1.0;
	        float curh_f = 2.0*hi/(h-1) - 1.0;

	        // compute the 2d gs value
		float d_x = curw_f - x; // distance along x axis
		float d_y = curh_f - y;
		if(d_x > dmax || d_x < -dmax || d_y > dmax || d_y < -dmax){
			continue;
		}
                float d = w2*d_x*d_x - 2*rho*w3*d_x*d_y + w4*d_y*d_y;
		float v = w1*d;
		v = exp(v);
                // printf("si:%d, sigma_x: %f, sigma_y:%f, rho:%f, x:%f, y:%f, v:%f\n", si, sigma_x, sigma_y, rho, x,y,v);

		// compute grad of coords
		float v_2_w1 = v*2*w1;
		float g_vst_to_gsx = v_2_w1*(-w2*d_x+rho*w3*d_y); // grad of v^{st} to G^s_x
		float g_vst_to_gsy = v_2_w1*(-w4*d_y+rho*w3*d_x); // grad of v^{st} to G^s_y

		// compute grad of sigmas
		float g_vst_to_gsigx = v_2_w1*od_sx* (w3*rho*d_x*d_y - w2*d_x*d_x);
		float g_vst_to_gsigy = v_2_w1*od_sy* (w3*rho*d_x*d_y - w4*d_y*d_y);
		float g_vst_to_rho = -v_2_w1*(2*w1*rho*d+w3*d_x*d_y);

		for(int ci=0; ci<c; ci++){
		    float _gptc = grads[(hi*w+wi)*c+ci];
		    float _gpt = _gptc*colors[curs*c+ci];

		    grads_colors[curs*c+ci] += v*_gptc;

                    grads_coords[curs*2+0] += _gpt*g_vst_to_gsx;
                    grads_coords[curs*2+1] += _gpt*g_vst_to_gsy;

                    grads_sigmas[curs*3+0] += _gpt*g_vst_to_gsigx;
                    grads_sigmas[curs*3+1] += _gpt*g_vst_to_gsigy;
                    grads_sigmas[curs*3+2] += _gpt*g_vst_to_rho;
		}

	}
    }

}

void _gs_render_backward(
        const float *sigmas,
        const float *coords,
        const float *colors,
	const float *grads, // (h, w, c)
	float *grads_sigmas,
	float *grads_coords,
	float *grads_colors,
	const int s, 
	const int h, 
	const int w,
	const int c,
	const float dmax
	) {

        int threads=64;
        dim3 grid(s, 1);
        dim3 block( threads, 1);
        _gs_render_backward_cuda<<<grid, block>>>(sigmas, coords, colors, grads, grads_sigmas, grads_coords, grads_colors, s, h, w, c, dmax);
}