import streamlit as st from transformers import pipeline # Initialize the emotion detection pipeline emotion_model = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # Set up the title and description st.title("Emotion Detector in Text") st.write("Type a text below, and the model will predict the emotion behind it.") # Input field for text user_input = st.text_area("Enter your text here:") if st.button("Detect Emotion"): if user_input.strip(): # Get emotion predictions emotion = emotion_model(user_input)[0] label = emotion['label'] score = emotion['score'] # Display emotion and confidence score st.write(f"**Detected Emotion:** {label}") st.write(f"**Confidence Score:** {score:.2f}") else: st.error("Please enter some text.") # Footer st.markdown("Developed by [Your Name]. Deployed on Hugging Face Spaces.")