File size: 6,998 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import folder_paths
import comfy.utils
import comfy.ops
import comfy.model_management
import comfy.ldm.common_dit
import comfy.latent_formats


class BlockWiseControlBlock(torch.nn.Module):
    # [linear, gelu, linear]
    def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None):
        super().__init__()
        self.x_rms = operations.RMSNorm(dim, eps=1e-6)
        self.y_rms = operations.RMSNorm(dim, eps=1e-6)
        self.input_proj = operations.Linear(dim, dim)
        self.act = torch.nn.GELU()
        self.output_proj = operations.Linear(dim, dim)

    def forward(self, x, y):
        x, y = self.x_rms(x), self.y_rms(y)
        x = self.input_proj(x + y)
        x = self.act(x)
        x = self.output_proj(x)
        return x


class QwenImageBlockWiseControlNet(torch.nn.Module):
    def __init__(
        self,
        num_layers: int = 60,
        in_dim: int = 64,
        additional_in_dim: int = 0,
        dim: int = 3072,
        device=None, dtype=None, operations=None
    ):
        super().__init__()
        self.additional_in_dim = additional_in_dim
        self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype)
        self.controlnet_blocks = torch.nn.ModuleList(
            [
                BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations)
                for _ in range(num_layers)
            ]
        )

    def process_input_latent_image(self, latent_image):
        latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16])
        patch_size = 2
        hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size))
        orig_shape = hidden_states.shape
        hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
        hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
        hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
        return self.img_in(hidden_states)

    def control_block(self, img, controlnet_conditioning, block_id):
        return self.controlnet_blocks[block_id](img, controlnet_conditioning)


class ModelPatchLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ),
                              }}
    RETURN_TYPES = ("MODEL_PATCH",)
    FUNCTION = "load_model_patch"
    EXPERIMENTAL = True

    CATEGORY = "advanced/loaders"

    def load_model_patch(self, name):
        model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name)
        sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
        dtype = comfy.utils.weight_dtype(sd)
        # TODO: this node will work with more types of model patches
        additional_in_dim = sd["img_in.weight"].shape[1] - 64
        model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
        model.load_state_dict(sd)
        model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
        return (model,)


class DiffSynthCnetPatch:
    def __init__(self, model_patch, vae, image, strength, mask=None):
        self.model_patch = model_patch
        self.vae = vae
        self.image = image
        self.strength = strength
        self.mask = mask
        self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
        self.encoded_image_size = (image.shape[1], image.shape[2])

    def encode_latent_cond(self, image):
        latent_image = self.vae.encode(image)
        if self.model_patch.model.additional_in_dim > 0:
            if self.mask is None:
                mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4]
            else:
                mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")

            return torch.cat([latent_image, mask_], dim=1)
        else:
            return latent_image

    def __call__(self, kwargs):
        x = kwargs.get("x")
        img = kwargs.get("img")
        block_index = kwargs.get("block_index")
        spacial_compression = self.vae.spacial_compression_encode()
        if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
            image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
            loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
            self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
            self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
            comfy.model_management.load_models_gpu(loaded_models)

        img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength)
        kwargs['img'] = img
        return kwargs

    def to(self, device_or_dtype):
        if isinstance(device_or_dtype, torch.device):
            self.encoded_image = self.encoded_image.to(device_or_dtype)
        return self

    def models(self):
        return [self.model_patch]

class QwenImageDiffsynthControlnet:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "model_patch": ("MODEL_PATCH",),
                              "vae": ("VAE",),
                              "image": ("IMAGE",),
                              "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              },
                "optional": {"mask": ("MASK",)}}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "diffsynth_controlnet"
    EXPERIMENTAL = True

    CATEGORY = "advanced/loaders/qwen"

    def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
        model_patched = model.clone()
        image = image[:, :, :, :3]
        if mask is not None:
            if mask.ndim == 3:
                mask = mask.unsqueeze(1)
            if mask.ndim == 4:
                mask = mask.unsqueeze(2)
            mask = 1.0 - mask

        model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
        return (model_patched,)


NODE_CLASS_MAPPINGS = {
    "ModelPatchLoader": ModelPatchLoader,
    "QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
}