File size: 6,196 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing_extensions import override

from comfy_api.latest import ComfyExtension, io


def attention_multiply(attn, model, q, k, v, out):
    m = model.clone()
    sd = model.model_state_dict()

    for key in sd:
        if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, q)
        if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, k)
        if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, v)
        if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, out)

    return m


class UNetSelfAttentionMultiply(io.ComfyNode):
    @classmethod
    def define_schema(cls) -> io.Schema:
        return io.Schema(
            node_id="UNetSelfAttentionMultiply",
            category="_for_testing/attention_experiments",
            inputs=[
                io.Model.Input("model"),
                io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
            ],
            outputs=[io.Model.Output()],
            is_experimental=True,
        )

    @classmethod
    def execute(cls, model, q, k, v, out) -> io.NodeOutput:
        m = attention_multiply("attn1", model, q, k, v, out)
        return io.NodeOutput(m)


class UNetCrossAttentionMultiply(io.ComfyNode):
    @classmethod
    def define_schema(cls) -> io.Schema:
        return io.Schema(
            node_id="UNetCrossAttentionMultiply",
            category="_for_testing/attention_experiments",
            inputs=[
                io.Model.Input("model"),
                io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
            ],
            outputs=[io.Model.Output()],
            is_experimental=True,
        )

    @classmethod
    def execute(cls, model, q, k, v, out) -> io.NodeOutput:
        m = attention_multiply("attn2", model, q, k, v, out)
        return io.NodeOutput(m)


class CLIPAttentionMultiply(io.ComfyNode):
    @classmethod
    def define_schema(cls) -> io.Schema:
        return io.Schema(
            node_id="CLIPAttentionMultiply",
            category="_for_testing/attention_experiments",
            inputs=[
                io.Clip.Input("clip"),
                io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
            ],
            outputs=[io.Clip.Output()],
            is_experimental=True,
        )

    @classmethod
    def execute(cls, clip, q, k, v, out) -> io.NodeOutput:
        m = clip.clone()
        sd = m.patcher.model_state_dict()

        for key in sd:
            if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, q)
            if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, k)
            if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, v)
            if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, out)
        return io.NodeOutput(m)


class UNetTemporalAttentionMultiply(io.ComfyNode):
    @classmethod
    def define_schema(cls) -> io.Schema:
        return io.Schema(
            node_id="UNetTemporalAttentionMultiply",
            category="_for_testing/attention_experiments",
            inputs=[
                io.Model.Input("model"),
                io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01),
                io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
            ],
            outputs=[io.Model.Output()],
            is_experimental=True,
        )

    @classmethod
    def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput:
        m = model.clone()
        sd = model.model_state_dict()

        for k in sd:
            if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")):
                if '.time_stack.' in k:
                    m.add_patches({k: (None,)}, 0.0, self_temporal)
                else:
                    m.add_patches({k: (None,)}, 0.0, self_structural)
            elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")):
                if '.time_stack.' in k:
                    m.add_patches({k: (None,)}, 0.0, cross_temporal)
                else:
                    m.add_patches({k: (None,)}, 0.0, cross_structural)
        return io.NodeOutput(m)


class AttentionMultiplyExtension(ComfyExtension):
    @override
    async def get_node_list(self) -> list[type[io.ComfyNode]]:
        return [
            UNetSelfAttentionMultiply,
            UNetCrossAttentionMultiply,
            CLIPAttentionMultiply,
            UNetTemporalAttentionMultiply,
        ]

async def comfy_entrypoint() -> AttentionMultiplyExtension:
    return AttentionMultiplyExtension()