File size: 22,532 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
"""Runway API Nodes

API Docs:
  - https://docs.dev.runwayml.com/api/#tag/Task-management/paths/~1v1~1tasks~1%7Bid%7D/delete

User Guides:
  - https://help.runwayml.com/hc/en-us/sections/30265301423635-Gen-3-Alpha
  - https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video
  - https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo
  - https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3

"""

from typing import Union, Optional, Any
from enum import Enum

import torch

from comfy_api_nodes.apis import (
    RunwayImageToVideoRequest,
    RunwayImageToVideoResponse,
    RunwayTaskStatusResponse as TaskStatusResponse,
    RunwayTaskStatusEnum as TaskStatus,
    RunwayModelEnum as Model,
    RunwayDurationEnum as Duration,
    RunwayAspectRatioEnum as AspectRatio,
    RunwayPromptImageObject,
    RunwayPromptImageDetailedObject,
    RunwayTextToImageRequest,
    RunwayTextToImageResponse,
    Model4,
    ReferenceImage,
    RunwayTextToImageAspectRatioEnum,
)
from comfy_api_nodes.apis.client import (
    ApiEndpoint,
    HttpMethod,
    SynchronousOperation,
    PollingOperation,
    EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
    upload_images_to_comfyapi,
    download_url_to_video_output,
    image_tensor_pair_to_batch,
    validate_string,
    download_url_to_image_tensor,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input_impl import VideoFromFile
from comfy.comfy_types.node_typing import IO, ComfyNodeABC

PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video"
PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image"
PATH_GET_TASK_STATUS = "/proxy/runway/tasks"

AVERAGE_DURATION_I2V_SECONDS = 64
AVERAGE_DURATION_FLF_SECONDS = 256
AVERAGE_DURATION_T2I_SECONDS = 41


class RunwayApiError(Exception):
    """Base exception for Runway API errors."""

    pass


class RunwayGen4TurboAspectRatio(str, Enum):
    """Aspect ratios supported for Image to Video API when using gen4_turbo model."""

    field_1280_720 = "1280:720"
    field_720_1280 = "720:1280"
    field_1104_832 = "1104:832"
    field_832_1104 = "832:1104"
    field_960_960 = "960:960"
    field_1584_672 = "1584:672"


class RunwayGen3aAspectRatio(str, Enum):
    """Aspect ratios supported for Image to Video API when using gen3a_turbo model."""

    field_768_1280 = "768:1280"
    field_1280_768 = "1280:768"


def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
    """Returns the video URL from the task status response if it exists."""
    if response.output and len(response.output) > 0:
        return response.output[0]
    return None


# TODO: replace with updated image validation utils (upstream)
def validate_input_image(image: torch.Tensor) -> bool:
    """
    Validate the input image is within the size limits for the Runway API.
    See: https://docs.dev.runwayml.com/assets/inputs/#common-error-reasons
    """
    return image.shape[2] < 8000 and image.shape[1] < 8000


async def poll_until_finished(
    auth_kwargs: dict[str, str],
    api_endpoint: ApiEndpoint[Any, TaskStatusResponse],
    estimated_duration: Optional[int] = None,
    node_id: Optional[str] = None,
) -> TaskStatusResponse:
    """Polls the Runway API endpoint until the task reaches a terminal state, then returns the response."""
    return await PollingOperation(
        poll_endpoint=api_endpoint,
        completed_statuses=[
            TaskStatus.SUCCEEDED.value,
        ],
        failed_statuses=[
            TaskStatus.FAILED.value,
            TaskStatus.CANCELLED.value,
        ],
        status_extractor=lambda response: response.status.value,
        auth_kwargs=auth_kwargs,
        result_url_extractor=get_video_url_from_task_status,
        estimated_duration=estimated_duration,
        node_id=node_id,
        progress_extractor=extract_progress_from_task_status,
    ).execute()


def extract_progress_from_task_status(
    response: TaskStatusResponse,
) -> Union[float, None]:
    if hasattr(response, "progress") and response.progress is not None:
        return response.progress * 100
    return None


def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
    """Returns the image URL from the task status response if it exists."""
    if response.output and len(response.output) > 0:
        return response.output[0]
    return None


class RunwayVideoGenNode(ComfyNodeABC):
    """Runway Video Node Base."""

    RETURN_TYPES = ("VIDEO",)
    FUNCTION = "api_call"
    CATEGORY = "api node/video/Runway"
    API_NODE = True

    def validate_task_created(self, response: RunwayImageToVideoResponse) -> bool:
        """
        Validate the task creation response from the Runway API matches
        expected format.
        """
        if not bool(response.id):
            raise RunwayApiError("Invalid initial response from Runway API.")
        return True

    def validate_response(self, response: RunwayImageToVideoResponse) -> bool:
        """
        Validate the successful task status response from the Runway API
        matches expected format.
        """
        if not response.output or len(response.output) == 0:
            raise RunwayApiError(
                "Runway task succeeded but no video data found in response."
            )
        return True

    async def get_response(
        self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
    ) -> RunwayImageToVideoResponse:
        """Poll the task status until it is finished then get the response."""
        return await poll_until_finished(
            auth_kwargs,
            ApiEndpoint(
                path=f"{PATH_GET_TASK_STATUS}/{task_id}",
                method=HttpMethod.GET,
                request_model=EmptyRequest,
                response_model=TaskStatusResponse,
            ),
            estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
            node_id=node_id,
        )

    async def generate_video(
        self,
        request: RunwayImageToVideoRequest,
        auth_kwargs: dict[str, str],
        node_id: Optional[str] = None,
    ) -> tuple[VideoFromFile]:
        initial_operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=PATH_IMAGE_TO_VIDEO,
                method=HttpMethod.POST,
                request_model=RunwayImageToVideoRequest,
                response_model=RunwayImageToVideoResponse,
            ),
            request=request,
            auth_kwargs=auth_kwargs,
        )

        initial_response = await initial_operation.execute()
        self.validate_task_created(initial_response)
        task_id = initial_response.id

        final_response = await self.get_response(task_id, auth_kwargs, node_id)
        self.validate_response(final_response)

        video_url = get_video_url_from_task_status(final_response)
        return (await download_url_to_video_output(video_url),)


class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
    """Runway Image to Video Node using Gen3a Turbo model."""

    DESCRIPTION = "Generate a video from a single starting frame using Gen3a Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo."

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompt": model_field_to_node_input(
                    IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
                ),
                "start_frame": (
                    IO.IMAGE,
                    {"tooltip": "Start frame to be used for the video"},
                ),
                "duration": model_field_to_node_input(
                    IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
                ),
                "ratio": model_field_to_node_input(
                    IO.COMBO,
                    RunwayImageToVideoRequest,
                    "ratio",
                    enum_type=RunwayGen3aAspectRatio,
                ),
                "seed": model_field_to_node_input(
                    IO.INT,
                    RunwayImageToVideoRequest,
                    "seed",
                    control_after_generate=True,
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    async def api_call(
        self,
        prompt: str,
        start_frame: torch.Tensor,
        duration: str,
        ratio: str,
        seed: int,
        unique_id: Optional[str] = None,
        **kwargs,
    ) -> tuple[VideoFromFile]:
        # Validate inputs
        validate_string(prompt, min_length=1)
        validate_input_image(start_frame)

        # Upload image
        download_urls = await upload_images_to_comfyapi(
            start_frame,
            max_images=1,
            mime_type="image/png",
            auth_kwargs=kwargs,
        )
        if len(download_urls) != 1:
            raise RunwayApiError("Failed to upload one or more images to comfy api.")

        return await self.generate_video(
            RunwayImageToVideoRequest(
                promptText=prompt,
                seed=seed,
                model=Model("gen3a_turbo"),
                duration=Duration(duration),
                ratio=AspectRatio(ratio),
                promptImage=RunwayPromptImageObject(
                    root=[
                        RunwayPromptImageDetailedObject(
                            uri=str(download_urls[0]), position="first"
                        )
                    ]
                ),
            ),
            auth_kwargs=kwargs,
            node_id=unique_id,
        )


class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
    """Runway Image to Video Node using Gen4 Turbo model."""

    DESCRIPTION = "Generate a video from a single starting frame using Gen4 Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video."

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompt": model_field_to_node_input(
                    IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
                ),
                "start_frame": (
                    IO.IMAGE,
                    {"tooltip": "Start frame to be used for the video"},
                ),
                "duration": model_field_to_node_input(
                    IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
                ),
                "ratio": model_field_to_node_input(
                    IO.COMBO,
                    RunwayImageToVideoRequest,
                    "ratio",
                    enum_type=RunwayGen4TurboAspectRatio,
                ),
                "seed": model_field_to_node_input(
                    IO.INT,
                    RunwayImageToVideoRequest,
                    "seed",
                    control_after_generate=True,
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    async def api_call(
        self,
        prompt: str,
        start_frame: torch.Tensor,
        duration: str,
        ratio: str,
        seed: int,
        unique_id: Optional[str] = None,
        **kwargs,
    ) -> tuple[VideoFromFile]:
        # Validate inputs
        validate_string(prompt, min_length=1)
        validate_input_image(start_frame)

        # Upload image
        download_urls = await upload_images_to_comfyapi(
            start_frame,
            max_images=1,
            mime_type="image/png",
            auth_kwargs=kwargs,
        )
        if len(download_urls) != 1:
            raise RunwayApiError("Failed to upload one or more images to comfy api.")

        return await self.generate_video(
            RunwayImageToVideoRequest(
                promptText=prompt,
                seed=seed,
                model=Model("gen4_turbo"),
                duration=Duration(duration),
                ratio=AspectRatio(ratio),
                promptImage=RunwayPromptImageObject(
                    root=[
                        RunwayPromptImageDetailedObject(
                            uri=str(download_urls[0]), position="first"
                        )
                    ]
                ),
            ),
            auth_kwargs=kwargs,
            node_id=unique_id,
        )


class RunwayFirstLastFrameNode(RunwayVideoGenNode):
    """Runway First-Last Frame Node."""

    DESCRIPTION = "Upload first and last keyframes, draft a prompt, and generate a video. More complex transitions, such as cases where the Last frame is completely different from the First frame, may benefit from the longer 10s duration. This would give the generation more time to smoothly transition between the two inputs. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3."

    async def get_response(
        self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
    ) -> RunwayImageToVideoResponse:
        return await poll_until_finished(
            auth_kwargs,
            ApiEndpoint(
                path=f"{PATH_GET_TASK_STATUS}/{task_id}",
                method=HttpMethod.GET,
                request_model=EmptyRequest,
                response_model=TaskStatusResponse,
            ),
            estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
            node_id=node_id,
        )

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompt": model_field_to_node_input(
                    IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
                ),
                "start_frame": (
                    IO.IMAGE,
                    {"tooltip": "Start frame to be used for the video"},
                ),
                "end_frame": (
                    IO.IMAGE,
                    {
                        "tooltip": "End frame to be used for the video. Supported for gen3a_turbo only."
                    },
                ),
                "duration": model_field_to_node_input(
                    IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
                ),
                "ratio": model_field_to_node_input(
                    IO.COMBO,
                    RunwayImageToVideoRequest,
                    "ratio",
                    enum_type=RunwayGen3aAspectRatio,
                ),
                "seed": model_field_to_node_input(
                    IO.INT,
                    RunwayImageToVideoRequest,
                    "seed",
                    control_after_generate=True,
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
                "comfy_api_key": "API_KEY_COMFY_ORG",
            },
        }

    async def api_call(
        self,
        prompt: str,
        start_frame: torch.Tensor,
        end_frame: torch.Tensor,
        duration: str,
        ratio: str,
        seed: int,
        unique_id: Optional[str] = None,
        **kwargs,
    ) -> tuple[VideoFromFile]:
        # Validate inputs
        validate_string(prompt, min_length=1)
        validate_input_image(start_frame)
        validate_input_image(end_frame)

        # Upload images
        stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
        download_urls = await upload_images_to_comfyapi(
            stacked_input_images,
            max_images=2,
            mime_type="image/png",
            auth_kwargs=kwargs,
        )
        if len(download_urls) != 2:
            raise RunwayApiError("Failed to upload one or more images to comfy api.")

        return await self.generate_video(
            RunwayImageToVideoRequest(
                promptText=prompt,
                seed=seed,
                model=Model("gen3a_turbo"),
                duration=Duration(duration),
                ratio=AspectRatio(ratio),
                promptImage=RunwayPromptImageObject(
                    root=[
                        RunwayPromptImageDetailedObject(
                            uri=str(download_urls[0]), position="first"
                        ),
                        RunwayPromptImageDetailedObject(
                            uri=str(download_urls[1]), position="last"
                        ),
                    ]
                ),
            ),
            auth_kwargs=kwargs,
            node_id=unique_id,
        )


class RunwayTextToImageNode(ComfyNodeABC):
    """Runway Text to Image Node."""

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/Runway"
    API_NODE = True
    DESCRIPTION = "Generate an image from a text prompt using Runway's Gen 4 model. You can also include reference images to guide the generation."

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "prompt": model_field_to_node_input(
                    IO.STRING, RunwayTextToImageRequest, "promptText", multiline=True
                ),
                "ratio": model_field_to_node_input(
                    IO.COMBO,
                    RunwayTextToImageRequest,
                    "ratio",
                    enum_type=RunwayTextToImageAspectRatioEnum,
                ),
            },
            "optional": {
                "reference_image": (
                    IO.IMAGE,
                    {"tooltip": "Optional reference image to guide the generation"},
                )
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    def validate_task_created(self, response: RunwayTextToImageResponse) -> bool:
        """
        Validate the task creation response from the Runway API matches
        expected format.
        """
        if not bool(response.id):
            raise RunwayApiError("Invalid initial response from Runway API.")
        return True

    def validate_response(self, response: TaskStatusResponse) -> bool:
        """
        Validate the successful task status response from the Runway API
        matches expected format.
        """
        if not response.output or len(response.output) == 0:
            raise RunwayApiError(
                "Runway task succeeded but no image data found in response."
            )
        return True

    async def get_response(
        self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
    ) -> TaskStatusResponse:
        """Poll the task status until it is finished then get the response."""
        return await poll_until_finished(
            auth_kwargs,
            ApiEndpoint(
                path=f"{PATH_GET_TASK_STATUS}/{task_id}",
                method=HttpMethod.GET,
                request_model=EmptyRequest,
                response_model=TaskStatusResponse,
            ),
            estimated_duration=AVERAGE_DURATION_T2I_SECONDS,
            node_id=node_id,
        )

    async def api_call(
        self,
        prompt: str,
        ratio: str,
        reference_image: Optional[torch.Tensor] = None,
        unique_id: Optional[str] = None,
        **kwargs,
    ) -> tuple[torch.Tensor]:
        # Validate inputs
        validate_string(prompt, min_length=1)

        # Prepare reference images if provided
        reference_images = None
        if reference_image is not None:
            validate_input_image(reference_image)
            download_urls = await upload_images_to_comfyapi(
                reference_image,
                max_images=1,
                mime_type="image/png",
                auth_kwargs=kwargs,
            )
            if len(download_urls) != 1:
                raise RunwayApiError("Failed to upload reference image to comfy api.")

            reference_images = [ReferenceImage(uri=str(download_urls[0]))]

        # Create request
        request = RunwayTextToImageRequest(
            promptText=prompt,
            model=Model4.gen4_image,
            ratio=ratio,
            referenceImages=reference_images,
        )

        # Execute initial request
        initial_operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=PATH_TEXT_TO_IMAGE,
                method=HttpMethod.POST,
                request_model=RunwayTextToImageRequest,
                response_model=RunwayTextToImageResponse,
            ),
            request=request,
            auth_kwargs=kwargs,
        )

        initial_response = await initial_operation.execute()
        self.validate_task_created(initial_response)
        task_id = initial_response.id

        # Poll for completion
        final_response = await self.get_response(
            task_id, auth_kwargs=kwargs, node_id=unique_id
        )
        self.validate_response(final_response)

        # Download and return image
        image_url = get_image_url_from_task_status(final_response)
        return (await download_url_to_image_tensor(image_url),)


NODE_CLASS_MAPPINGS = {
    "RunwayFirstLastFrameNode": RunwayFirstLastFrameNode,
    "RunwayImageToVideoNodeGen3a": RunwayImageToVideoNodeGen3a,
    "RunwayImageToVideoNodeGen4": RunwayImageToVideoNodeGen4,
    "RunwayTextToImageNode": RunwayTextToImageNode,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "RunwayFirstLastFrameNode": "Runway First-Last-Frame to Video",
    "RunwayImageToVideoNodeGen3a": "Runway Image to Video (Gen3a Turbo)",
    "RunwayImageToVideoNodeGen4": "Runway Image to Video (Gen4 Turbo)",
    "RunwayTextToImageNode": "Runway Text to Image",
}