Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import DiffusionPipeline | |
import spaces | |
import torch | |
from concurrent.futures import ProcessPoolExecutor | |
from huggingface_hub import hf_hub_download | |
dev_model = "black-forest-labs/FLUX.1-dev" | |
schnell_model = "black-forest-labs/FLUX.1-schnell" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
repo_name = "ByteDance/Hyper-SD" | |
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" | |
hyper_lora = hf_hub_download(repo_name, ckpt_name) | |
repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" | |
ckpt_name = "diffusion_pytorch_model.safetensors" | |
turbo_lora = hf_hub_download(repo_name, ckpt_name) | |
pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16) | |
pipe_schnell = DiffusionPipeline.from_pretrained( | |
schnell_model, | |
text_encoder=pipe_dev.text_encoder, | |
text_encoder_2=pipe_dev.text_encoder_2, | |
tokenizer=pipe_dev.tokenizer, | |
tokenizer_2=pipe_dev.tokenizer_2, | |
torch_dtype=torch.bfloat16 | |
) | |
def run_dev_hyper(prompt): | |
print("dev_hyper") | |
pipe_dev.to("cuda") | |
print(hyper_lora) | |
pipe_dev.load_lora_weights(hyper_lora) | |
print("Loaded hyper lora!") | |
image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] | |
print("Ran!") | |
pipe_dev.unload_lora_weights() | |
return image | |
def run_dev_turbo(prompt): | |
print("dev_turbo") | |
pipe_dev.to("cuda") | |
print(turbo_lora) | |
pipe_dev.load_lora_weights(turbo_lora) | |
print("Loaded turbo lora!") | |
image = pipe_dev(prompt, num_inference_steps=8).images[0] | |
print("Ran!") | |
pipe_dev.unload_lora_weights() | |
return image | |
def run_schnell(prompt): | |
print("schnell") | |
pipe_schnell.to("cuda") | |
print("schnell on gpu") | |
image = pipe_schnell(prompt, num_inference_steps=4).images[0] | |
print("Ran!") | |
return image | |
def run_parallel_models(prompt): | |
print(prompt) | |
with ProcessPoolExecutor(max_workers=3) as executor: | |
future_dev_hyper = executor.submit(run_dev_hyper, prompt) | |
future_dev_turbo = executor.submit(run_dev_turbo, prompt) | |
future_schnell = executor.submit(run_schnell, prompt) | |
res_dev_hyper = future_dev_hyper.result() | |
res_dev_turbo = future_dev_turbo.result() | |
res_schnell = future_schnell.result() | |
return res_dev_hyper, res_dev_turbo, res_schnell | |
run_parallel_models.zerogpu = True | |
with gr.Blocks() as demo: | |
gr.Markdown("# Low Step Flux Comparison") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
submit = gr.Button() | |
with gr.Row(): | |
schnell = gr.Image(label="FLUX Schnell (4 steps)") | |
hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") | |
turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") | |
submit.click( | |
fn=run_parallel_models, | |
inputs=[prompt], | |
outputs=[schnell, hyper, turbo] | |
) | |
demo.launch() |