apolinario commited on
Commit
1a9130d
·
1 Parent(s): 3ce85b9

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. gradio_queue.db +0 -0
  2. gradio_queue.db-journal +0 -0
  3. latent-diffusion/LICENSE +21 -0
  4. latent-diffusion/README.md +274 -0
  5. latent-diffusion/configs/autoencoder/autoencoder_kl_16x16x16.yaml +54 -0
  6. latent-diffusion/configs/autoencoder/autoencoder_kl_32x32x4.yaml +53 -0
  7. latent-diffusion/configs/autoencoder/autoencoder_kl_64x64x3.yaml +54 -0
  8. latent-diffusion/configs/autoencoder/autoencoder_kl_8x8x64.yaml +53 -0
  9. latent-diffusion/configs/latent-diffusion/celebahq-ldm-vq-4.yaml +86 -0
  10. latent-diffusion/configs/latent-diffusion/cin-ldm-vq-f8.yaml +98 -0
  11. latent-diffusion/configs/latent-diffusion/cin256-v2.yaml +68 -0
  12. latent-diffusion/configs/latent-diffusion/ffhq-ldm-vq-4.yaml +85 -0
  13. latent-diffusion/configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml +85 -0
  14. latent-diffusion/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml +91 -0
  15. latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml +71 -0
  16. latent-diffusion/environment.yaml +27 -0
  17. latent-diffusion/ldm/__pycache__/util.cpython-39.pyc +0 -0
  18. latent-diffusion/ldm/data/__init__.py +0 -0
  19. latent-diffusion/ldm/data/base.py +23 -0
  20. latent-diffusion/ldm/data/imagenet.py +394 -0
  21. latent-diffusion/ldm/data/lsun.py +92 -0
  22. latent-diffusion/ldm/lr_scheduler.py +98 -0
  23. latent-diffusion/ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
  24. latent-diffusion/ldm/models/autoencoder.py +443 -0
  25. latent-diffusion/ldm/models/diffusion/__init__.py +0 -0
  26. latent-diffusion/ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
  27. latent-diffusion/ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
  28. latent-diffusion/ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
  29. latent-diffusion/ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
  30. latent-diffusion/ldm/models/diffusion/classifier.py +267 -0
  31. latent-diffusion/ldm/models/diffusion/ddim.py +203 -0
  32. latent-diffusion/ldm/models/diffusion/ddpm.py +1445 -0
  33. latent-diffusion/ldm/models/diffusion/plms.py +236 -0
  34. latent-diffusion/ldm/modules/__pycache__/attention.cpython-39.pyc +0 -0
  35. latent-diffusion/ldm/modules/__pycache__/ema.cpython-39.pyc +0 -0
  36. latent-diffusion/ldm/modules/__pycache__/x_transformer.cpython-39.pyc +0 -0
  37. latent-diffusion/ldm/modules/attention.py +261 -0
  38. latent-diffusion/ldm/modules/diffusionmodules/__init__.py +0 -0
  39. latent-diffusion/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc +0 -0
  40. latent-diffusion/ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc +0 -0
  41. latent-diffusion/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc +0 -0
  42. latent-diffusion/ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc +0 -0
  43. latent-diffusion/ldm/modules/diffusionmodules/model.py +835 -0
  44. latent-diffusion/ldm/modules/diffusionmodules/openaimodel.py +961 -0
  45. latent-diffusion/ldm/modules/diffusionmodules/util.py +267 -0
  46. latent-diffusion/ldm/modules/distributions/__init__.py +0 -0
  47. latent-diffusion/ldm/modules/distributions/__pycache__/__init__.cpython-39.pyc +0 -0
  48. latent-diffusion/ldm/modules/distributions/__pycache__/distributions.cpython-39.pyc +0 -0
  49. latent-diffusion/ldm/modules/distributions/distributions.py +92 -0
  50. latent-diffusion/ldm/modules/ema.py +76 -0
gradio_queue.db ADDED
File without changes
gradio_queue.db-journal ADDED
Binary file (512 Bytes). View file
 
latent-diffusion/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
latent-diffusion/README.md ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Latent Diffusion Models
2
+ [arXiv](https://arxiv.org/abs/2112.10752) | [BibTeX](#bibtex)
3
+
4
+ <p align="center">
5
+ <img src=assets/results.gif />
6
+ </p>
7
+
8
+
9
+
10
+ [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)<br/>
11
+ [Robin Rombach](https://github.com/rromb)\*,
12
+ [Andreas Blattmann](https://github.com/ablattmann)\*,
13
+ [Dominik Lorenz](https://github.com/qp-qp)\,
14
+ [Patrick Esser](https://github.com/pesser),
15
+ [Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
16
+ \* equal contribution
17
+
18
+ <p align="center">
19
+ <img src=assets/modelfigure.png />
20
+ </p>
21
+
22
+ ## News
23
+ ### April 2022
24
+ - More pre-trained LDMs are available:
25
+ - A 1.45B [model](#text-to-image) trained on the [LAION-400M](https://arxiv.org/abs/2111.02114) database.
26
+ - A class-conditional model on ImageNet, achieving a FID of 3.6 when using [classifier-free guidance](https://openreview.net/pdf?id=qw8AKxfYbI) Available via a [colab notebook](https://colab.research.google.com/github/CompVis/latent-diffusion/blob/main/scripts/latent_imagenet_diffusion.ipynb) [![][colab]][colab-cin].
27
+
28
+ ## Requirements
29
+ A suitable [conda](https://conda.io/) environment named `ldm` can be created
30
+ and activated with:
31
+
32
+ ```
33
+ conda env create -f environment.yaml
34
+ conda activate ldm
35
+ ```
36
+
37
+ # Pretrained Models
38
+ A general list of all available checkpoints is available in via our [model zoo](#model-zoo).
39
+ If you use any of these models in your work, we are always happy to receive a [citation](#bibtex).
40
+
41
+ ## Text-to-Image
42
+ ![text2img-figure](assets/txt2img-preview.png)
43
+
44
+
45
+ Download the pre-trained weights (5.7GB)
46
+ ```
47
+ mkdir -p models/ldm/text2img-large/
48
+ wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt
49
+ ```
50
+ and sample with
51
+ ```
52
+ python scripts/txt2img.py --prompt "a virus monster is playing guitar, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0 --ddim_steps 50
53
+ ```
54
+ This will save each sample individually as well as a grid of size `n_iter` x `n_samples` at the specified output location (default: `outputs/txt2img-samples`).
55
+ Quality, sampling speed and diversity are best controlled via the `scale`, `ddim_steps` and `ddim_eta` arguments.
56
+ As a rule of thumb, higher values of `scale` produce better samples at the cost of a reduced output diversity.
57
+ Furthermore, increasing `ddim_steps` generally also gives higher quality samples, but returns are diminishing for values > 250.
58
+ Fast sampling (i.e. low values of `ddim_steps`) while retaining good quality can be achieved by using `--ddim_eta 0.0`.
59
+ Faster sampling (i.e. even lower values of `ddim_steps`) while retaining good quality can be achieved by using `--ddim_eta 0.0` and `--plms` (added by Katherine Crowson, see [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778)).
60
+
61
+ #### Beyond 256²
62
+
63
+ For certain inputs, simply running the model in a convolutional fashion on larger features than it was trained on
64
+ can sometimes result in interesting results. To try it out, tune the `H` and `W` arguments (which will be integer-divided
65
+ by 8 in order to calculate the corresponding latent size), e.g. run
66
+
67
+ ```
68
+ python scripts/txt2img.py --prompt "a sunset behind a mountain range, vector image" --ddim_eta 1.0 --n_samples 1 --n_iter 1 --H 384 --W 1024 --scale 5.0
69
+ ```
70
+ to create a sample of size 384x1024. Note, however, that controllability is reduced compared to the 256x256 setting.
71
+
72
+ The example below was generated using the above command.
73
+ ![text2img-figure-conv](assets/txt2img-convsample.png)
74
+
75
+
76
+
77
+ ## Inpainting
78
+ ![inpainting](assets/inpainting.png)
79
+
80
+ Download the pre-trained weights
81
+ ```
82
+ wget -O models/ldm/inpainting_big/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1
83
+ ```
84
+
85
+ and sample with
86
+ ```
87
+ python scripts/inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results
88
+ ```
89
+ `indir` should contain images `*.png` and masks `<image_fname>_mask.png` like
90
+ the examples provided in `data/inpainting_examples`.
91
+
92
+ ## Class-Conditional ImageNet
93
+
94
+ Available via a [notebook](scripts/latent_imagenet_diffusion.ipynb) [![][colab]][colab-cin].
95
+ ![class-conditional](assets/birdhouse.png)
96
+
97
+ [colab]: <https://colab.research.google.com/assets/colab-badge.svg>
98
+ [colab-cin]: <https://colab.research.google.com/github/CompVis/latent-diffusion/blob/main/scripts/latent_imagenet_diffusion.ipynb>
99
+
100
+
101
+ ## Unconditional Models
102
+
103
+ We also provide a script for sampling from unconditional LDMs (e.g. LSUN, FFHQ, ...). Start it via
104
+
105
+ ```shell script
106
+ CUDA_VISIBLE_DEVICES=<GPU_ID> python scripts/sample_diffusion.py -r models/ldm/<model_spec>/model.ckpt -l <logdir> -n <\#samples> --batch_size <batch_size> -c <\#ddim steps> -e <\#eta>
107
+ ```
108
+
109
+ # Train your own LDMs
110
+
111
+ ## Data preparation
112
+
113
+ ### Faces
114
+ For downloading the CelebA-HQ and FFHQ datasets, proceed as described in the [taming-transformers](https://github.com/CompVis/taming-transformers#celeba-hq)
115
+ repository.
116
+
117
+ ### LSUN
118
+
119
+ The LSUN datasets can be conveniently downloaded via the script available [here](https://github.com/fyu/lsun).
120
+ We performed a custom split into training and validation images, and provide the corresponding filenames
121
+ at [https://ommer-lab.com/files/lsun.zip](https://ommer-lab.com/files/lsun.zip).
122
+ After downloading, extract them to `./data/lsun`. The beds/cats/churches subsets should
123
+ also be placed/symlinked at `./data/lsun/bedrooms`/`./data/lsun/cats`/`./data/lsun/churches`, respectively.
124
+
125
+ ### ImageNet
126
+ The code will try to download (through [Academic
127
+ Torrents](http://academictorrents.com/)) and prepare ImageNet the first time it
128
+ is used. However, since ImageNet is quite large, this requires a lot of disk
129
+ space and time. If you already have ImageNet on your disk, you can speed things
130
+ up by putting the data into
131
+ `${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` (which defaults to
132
+ `~/.cache/autoencoders/data/ILSVRC2012_{split}/data/`), where `{split}` is one
133
+ of `train`/`validation`. It should have the following structure:
134
+
135
+ ```
136
+ ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/
137
+ ├── n01440764
138
+ │ ├── n01440764_10026.JPEG
139
+ │ ├── n01440764_10027.JPEG
140
+ │ ├── ...
141
+ ├── n01443537
142
+ │ ├── n01443537_10007.JPEG
143
+ │ ├── n01443537_10014.JPEG
144
+ │ ├── ...
145
+ ├── ...
146
+ ```
147
+
148
+ If you haven't extracted the data, you can also place
149
+ `ILSVRC2012_img_train.tar`/`ILSVRC2012_img_val.tar` (or symlinks to them) into
150
+ `${XDG_CACHE}/autoencoders/data/ILSVRC2012_train/` /
151
+ `${XDG_CACHE}/autoencoders/data/ILSVRC2012_validation/`, which will then be
152
+ extracted into above structure without downloading it again. Note that this
153
+ will only happen if neither a folder
154
+ `${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` nor a file
155
+ `${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/.ready` exist. Remove them
156
+ if you want to force running the dataset preparation again.
157
+
158
+
159
+ ## Model Training
160
+
161
+ Logs and checkpoints for trained models are saved to `logs/<START_DATE_AND_TIME>_<config_spec>`.
162
+
163
+ ### Training autoencoder models
164
+
165
+ Configs for training a KL-regularized autoencoder on ImageNet are provided at `configs/autoencoder`.
166
+ Training can be started by running
167
+ ```
168
+ CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/autoencoder/<config_spec>.yaml -t --gpus 0,
169
+ ```
170
+ where `config_spec` is one of {`autoencoder_kl_8x8x64`(f=32, d=64), `autoencoder_kl_16x16x16`(f=16, d=16),
171
+ `autoencoder_kl_32x32x4`(f=8, d=4), `autoencoder_kl_64x64x3`(f=4, d=3)}.
172
+
173
+ For training VQ-regularized models, see the [taming-transformers](https://github.com/CompVis/taming-transformers)
174
+ repository.
175
+
176
+ ### Training LDMs
177
+
178
+ In ``configs/latent-diffusion/`` we provide configs for training LDMs on the LSUN-, CelebA-HQ, FFHQ and ImageNet datasets.
179
+ Training can be started by running
180
+
181
+ ```shell script
182
+ CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/latent-diffusion/<config_spec>.yaml -t --gpus 0,
183
+ ```
184
+
185
+ where ``<config_spec>`` is one of {`celebahq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),`ffhq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
186
+ `lsun_bedrooms-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
187
+ `lsun_churches-ldm-vq-4`(f=8, KL-reg. autoencoder, spatial size 32x32x4),`cin-ldm-vq-8`(f=8, VQ-reg. autoencoder, spatial size 32x32x4)}.
188
+
189
+ # Model Zoo
190
+
191
+ ## Pretrained Autoencoding Models
192
+ ![rec2](assets/reconstruction2.png)
193
+
194
+ All models were trained until convergence (no further substantial improvement in rFID).
195
+
196
+ | Model | rFID vs val | train steps |PSNR | PSIM | Link | Comments
197
+ |-------------------------|------------|----------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
198
+ | f=4, VQ (Z=8192, d=3) | 0.58 | 533066 | 27.43 +/- 4.26 | 0.53 +/- 0.21 | https://ommer-lab.com/files/latent-diffusion/vq-f4.zip | |
199
+ | f=4, VQ (Z=8192, d=3) | 1.06 | 658131 | 25.21 +/- 4.17 | 0.72 +/- 0.26 | https://heibox.uni-heidelberg.de/f/9c6681f64bb94338a069/?dl=1 | no attention |
200
+ | f=8, VQ (Z=16384, d=4) | 1.14 | 971043 | 23.07 +/- 3.99 | 1.17 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/vq-f8.zip | |
201
+ | f=8, VQ (Z=256, d=4) | 1.49 | 1608649 | 22.35 +/- 3.81 | 1.26 +/- 0.37 | https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip |
202
+ | f=16, VQ (Z=16384, d=8) | 5.15 | 1101166 | 20.83 +/- 3.61 | 1.73 +/- 0.43 | https://heibox.uni-heidelberg.de/f/0e42b04e2e904890a9b6/?dl=1 | |
203
+ | | | | | | | |
204
+ | f=4, KL | 0.27 | 176991 | 27.53 +/- 4.54 | 0.55 +/- 0.24 | https://ommer-lab.com/files/latent-diffusion/kl-f4.zip | |
205
+ | f=8, KL | 0.90 | 246803 | 24.19 +/- 4.19 | 1.02 +/- 0.35 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | |
206
+ | f=16, KL (d=16) | 0.87 | 442998 | 24.08 +/- 4.22 | 1.07 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f16.zip | |
207
+ | f=32, KL (d=64) | 2.04 | 406763 | 22.27 +/- 3.93 | 1.41 +/- 0.40 | https://ommer-lab.com/files/latent-diffusion/kl-f32.zip | |
208
+
209
+ ### Get the models
210
+
211
+ Running the following script downloads und extracts all available pretrained autoencoding models.
212
+ ```shell script
213
+ bash scripts/download_first_stages.sh
214
+ ```
215
+
216
+ The first stage models can then be found in `models/first_stage_models/<model_spec>`
217
+
218
+
219
+
220
+ ## Pretrained LDMs
221
+ | Datset | Task | Model | FID | IS | Prec | Recall | Link | Comments
222
+ |---------------------------------|------|--------------|---------------|-----------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
223
+ | CelebA-HQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0)| 5.11 (5.11) | 3.29 | 0.72 | 0.49 | https://ommer-lab.com/files/latent-diffusion/celeba.zip | |
224
+ | FFHQ | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 4.98 (4.98) | 4.50 (4.50) | 0.73 | 0.50 | https://ommer-lab.com/files/latent-diffusion/ffhq.zip | |
225
+ | LSUN-Churches | Unconditional Image Synthesis | LDM-KL-8 (400 DDIM steps, eta=0)| 4.02 (4.02) | 2.72 | 0.64 | 0.52 | https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip | |
226
+ | LSUN-Bedrooms | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 2.95 (3.0) | 2.22 (2.23)| 0.66 | 0.48 | https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip | |
227
+ | ImageNet | Class-conditional Image Synthesis | LDM-VQ-8 (200 DDIM steps, eta=1) | 7.77(7.76)* /15.82** | 201.56(209.52)* /78.82** | 0.84* / 0.65** | 0.35* / 0.63** | https://ommer-lab.com/files/latent-diffusion/cin.zip | *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by [ADM](https://github.com/openai/guided-diffusion) |
228
+ | Conceptual Captions | Text-conditional Image Synthesis | LDM-VQ-f4 (100 DDIM steps, eta=0) | 16.79 | 13.89 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/text2img.zip | finetuned from LAION |
229
+ | OpenImages | Super-resolution | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip | BSR image degradation |
230
+ | OpenImages | Layout-to-Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0) | 32.02 | 15.92 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip | |
231
+ | Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip | |
232
+ | Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip | finetuned on resolution 512x512 |
233
+
234
+
235
+ ### Get the models
236
+
237
+ The LDMs listed above can jointly be downloaded and extracted via
238
+
239
+ ```shell script
240
+ bash scripts/download_models.sh
241
+ ```
242
+
243
+ The models can then be found in `models/ldm/<model_spec>`.
244
+
245
+
246
+
247
+ ## Coming Soon...
248
+
249
+ * More inference scripts for conditional LDMs.
250
+ * In the meantime, you can play with our colab notebook https://colab.research.google.com/drive/1xqzUi2iXQXDqXBHQGP9Mqt2YrYW6cx-J?usp=sharing
251
+
252
+ ## Comments
253
+
254
+ - Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
255
+ and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
256
+ Thanks for open-sourcing!
257
+
258
+ - The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
259
+
260
+
261
+ ## BibTeX
262
+
263
+ ```
264
+ @misc{rombach2021highresolution,
265
+ title={High-Resolution Image Synthesis with Latent Diffusion Models},
266
+ author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
267
+ year={2021},
268
+ eprint={2112.10752},
269
+ archivePrefix={arXiv},
270
+ primaryClass={cs.CV}
271
+ }
272
+ ```
273
+
274
+
latent-diffusion/configs/autoencoder/autoencoder_kl_16x16x16.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 4.5e-6
3
+ target: ldm.models.autoencoder.AutoencoderKL
4
+ params:
5
+ monitor: "val/rec_loss"
6
+ embed_dim: 16
7
+ lossconfig:
8
+ target: ldm.modules.losses.LPIPSWithDiscriminator
9
+ params:
10
+ disc_start: 50001
11
+ kl_weight: 0.000001
12
+ disc_weight: 0.5
13
+
14
+ ddconfig:
15
+ double_z: True
16
+ z_channels: 16
17
+ resolution: 256
18
+ in_channels: 3
19
+ out_ch: 3
20
+ ch: 128
21
+ ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1
22
+ num_res_blocks: 2
23
+ attn_resolutions: [16]
24
+ dropout: 0.0
25
+
26
+
27
+ data:
28
+ target: main.DataModuleFromConfig
29
+ params:
30
+ batch_size: 12
31
+ wrap: True
32
+ train:
33
+ target: ldm.data.imagenet.ImageNetSRTrain
34
+ params:
35
+ size: 256
36
+ degradation: pil_nearest
37
+ validation:
38
+ target: ldm.data.imagenet.ImageNetSRValidation
39
+ params:
40
+ size: 256
41
+ degradation: pil_nearest
42
+
43
+ lightning:
44
+ callbacks:
45
+ image_logger:
46
+ target: main.ImageLogger
47
+ params:
48
+ batch_frequency: 1000
49
+ max_images: 8
50
+ increase_log_steps: True
51
+
52
+ trainer:
53
+ benchmark: True
54
+ accumulate_grad_batches: 2
latent-diffusion/configs/autoencoder/autoencoder_kl_32x32x4.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 4.5e-6
3
+ target: ldm.models.autoencoder.AutoencoderKL
4
+ params:
5
+ monitor: "val/rec_loss"
6
+ embed_dim: 4
7
+ lossconfig:
8
+ target: ldm.modules.losses.LPIPSWithDiscriminator
9
+ params:
10
+ disc_start: 50001
11
+ kl_weight: 0.000001
12
+ disc_weight: 0.5
13
+
14
+ ddconfig:
15
+ double_z: True
16
+ z_channels: 4
17
+ resolution: 256
18
+ in_channels: 3
19
+ out_ch: 3
20
+ ch: 128
21
+ ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
22
+ num_res_blocks: 2
23
+ attn_resolutions: [ ]
24
+ dropout: 0.0
25
+
26
+ data:
27
+ target: main.DataModuleFromConfig
28
+ params:
29
+ batch_size: 12
30
+ wrap: True
31
+ train:
32
+ target: ldm.data.imagenet.ImageNetSRTrain
33
+ params:
34
+ size: 256
35
+ degradation: pil_nearest
36
+ validation:
37
+ target: ldm.data.imagenet.ImageNetSRValidation
38
+ params:
39
+ size: 256
40
+ degradation: pil_nearest
41
+
42
+ lightning:
43
+ callbacks:
44
+ image_logger:
45
+ target: main.ImageLogger
46
+ params:
47
+ batch_frequency: 1000
48
+ max_images: 8
49
+ increase_log_steps: True
50
+
51
+ trainer:
52
+ benchmark: True
53
+ accumulate_grad_batches: 2
latent-diffusion/configs/autoencoder/autoencoder_kl_64x64x3.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 4.5e-6
3
+ target: ldm.models.autoencoder.AutoencoderKL
4
+ params:
5
+ monitor: "val/rec_loss"
6
+ embed_dim: 3
7
+ lossconfig:
8
+ target: ldm.modules.losses.LPIPSWithDiscriminator
9
+ params:
10
+ disc_start: 50001
11
+ kl_weight: 0.000001
12
+ disc_weight: 0.5
13
+
14
+ ddconfig:
15
+ double_z: True
16
+ z_channels: 3
17
+ resolution: 256
18
+ in_channels: 3
19
+ out_ch: 3
20
+ ch: 128
21
+ ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
22
+ num_res_blocks: 2
23
+ attn_resolutions: [ ]
24
+ dropout: 0.0
25
+
26
+
27
+ data:
28
+ target: main.DataModuleFromConfig
29
+ params:
30
+ batch_size: 12
31
+ wrap: True
32
+ train:
33
+ target: ldm.data.imagenet.ImageNetSRTrain
34
+ params:
35
+ size: 256
36
+ degradation: pil_nearest
37
+ validation:
38
+ target: ldm.data.imagenet.ImageNetSRValidation
39
+ params:
40
+ size: 256
41
+ degradation: pil_nearest
42
+
43
+ lightning:
44
+ callbacks:
45
+ image_logger:
46
+ target: main.ImageLogger
47
+ params:
48
+ batch_frequency: 1000
49
+ max_images: 8
50
+ increase_log_steps: True
51
+
52
+ trainer:
53
+ benchmark: True
54
+ accumulate_grad_batches: 2
latent-diffusion/configs/autoencoder/autoencoder_kl_8x8x64.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 4.5e-6
3
+ target: ldm.models.autoencoder.AutoencoderKL
4
+ params:
5
+ monitor: "val/rec_loss"
6
+ embed_dim: 64
7
+ lossconfig:
8
+ target: ldm.modules.losses.LPIPSWithDiscriminator
9
+ params:
10
+ disc_start: 50001
11
+ kl_weight: 0.000001
12
+ disc_weight: 0.5
13
+
14
+ ddconfig:
15
+ double_z: True
16
+ z_channels: 64
17
+ resolution: 256
18
+ in_channels: 3
19
+ out_ch: 3
20
+ ch: 128
21
+ ch_mult: [ 1,1,2,2,4,4] # num_down = len(ch_mult)-1
22
+ num_res_blocks: 2
23
+ attn_resolutions: [16,8]
24
+ dropout: 0.0
25
+
26
+ data:
27
+ target: main.DataModuleFromConfig
28
+ params:
29
+ batch_size: 12
30
+ wrap: True
31
+ train:
32
+ target: ldm.data.imagenet.ImageNetSRTrain
33
+ params:
34
+ size: 256
35
+ degradation: pil_nearest
36
+ validation:
37
+ target: ldm.data.imagenet.ImageNetSRValidation
38
+ params:
39
+ size: 256
40
+ degradation: pil_nearest
41
+
42
+ lightning:
43
+ callbacks:
44
+ image_logger:
45
+ target: main.ImageLogger
46
+ params:
47
+ batch_frequency: 1000
48
+ max_images: 8
49
+ increase_log_steps: True
50
+
51
+ trainer:
52
+ benchmark: True
53
+ accumulate_grad_batches: 2
latent-diffusion/configs/latent-diffusion/celebahq-ldm-vq-4.yaml ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 2.0e-06
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0195
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ image_size: 64
12
+ channels: 3
13
+ monitor: val/loss_simple_ema
14
+
15
+ unet_config:
16
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
17
+ params:
18
+ image_size: 64
19
+ in_channels: 3
20
+ out_channels: 3
21
+ model_channels: 224
22
+ attention_resolutions:
23
+ # note: this isn\t actually the resolution but
24
+ # the downsampling factor, i.e. this corresnponds to
25
+ # attention on spatial resolution 8,16,32, as the
26
+ # spatial reolution of the latents is 64 for f4
27
+ - 8
28
+ - 4
29
+ - 2
30
+ num_res_blocks: 2
31
+ channel_mult:
32
+ - 1
33
+ - 2
34
+ - 3
35
+ - 4
36
+ num_head_channels: 32
37
+ first_stage_config:
38
+ target: ldm.models.autoencoder.VQModelInterface
39
+ params:
40
+ embed_dim: 3
41
+ n_embed: 8192
42
+ ckpt_path: models/first_stage_models/vq-f4/model.ckpt
43
+ ddconfig:
44
+ double_z: false
45
+ z_channels: 3
46
+ resolution: 256
47
+ in_channels: 3
48
+ out_ch: 3
49
+ ch: 128
50
+ ch_mult:
51
+ - 1
52
+ - 2
53
+ - 4
54
+ num_res_blocks: 2
55
+ attn_resolutions: []
56
+ dropout: 0.0
57
+ lossconfig:
58
+ target: torch.nn.Identity
59
+ cond_stage_config: __is_unconditional__
60
+ data:
61
+ target: main.DataModuleFromConfig
62
+ params:
63
+ batch_size: 48
64
+ num_workers: 5
65
+ wrap: false
66
+ train:
67
+ target: taming.data.faceshq.CelebAHQTrain
68
+ params:
69
+ size: 256
70
+ validation:
71
+ target: taming.data.faceshq.CelebAHQValidation
72
+ params:
73
+ size: 256
74
+
75
+
76
+ lightning:
77
+ callbacks:
78
+ image_logger:
79
+ target: main.ImageLogger
80
+ params:
81
+ batch_frequency: 5000
82
+ max_images: 8
83
+ increase_log_steps: False
84
+
85
+ trainer:
86
+ benchmark: True
latent-diffusion/configs/latent-diffusion/cin-ldm-vq-f8.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-06
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0195
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ cond_stage_key: class_label
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ unet_config:
18
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
19
+ params:
20
+ image_size: 32
21
+ in_channels: 4
22
+ out_channels: 4
23
+ model_channels: 256
24
+ attention_resolutions:
25
+ #note: this isn\t actually the resolution but
26
+ # the downsampling factor, i.e. this corresnponds to
27
+ # attention on spatial resolution 8,16,32, as the
28
+ # spatial reolution of the latents is 32 for f8
29
+ - 4
30
+ - 2
31
+ - 1
32
+ num_res_blocks: 2
33
+ channel_mult:
34
+ - 1
35
+ - 2
36
+ - 4
37
+ num_head_channels: 32
38
+ use_spatial_transformer: true
39
+ transformer_depth: 1
40
+ context_dim: 512
41
+ first_stage_config:
42
+ target: ldm.models.autoencoder.VQModelInterface
43
+ params:
44
+ embed_dim: 4
45
+ n_embed: 16384
46
+ ckpt_path: configs/first_stage_models/vq-f8/model.yaml
47
+ ddconfig:
48
+ double_z: false
49
+ z_channels: 4
50
+ resolution: 256
51
+ in_channels: 3
52
+ out_ch: 3
53
+ ch: 128
54
+ ch_mult:
55
+ - 1
56
+ - 2
57
+ - 2
58
+ - 4
59
+ num_res_blocks: 2
60
+ attn_resolutions:
61
+ - 32
62
+ dropout: 0.0
63
+ lossconfig:
64
+ target: torch.nn.Identity
65
+ cond_stage_config:
66
+ target: ldm.modules.encoders.modules.ClassEmbedder
67
+ params:
68
+ embed_dim: 512
69
+ key: class_label
70
+ data:
71
+ target: main.DataModuleFromConfig
72
+ params:
73
+ batch_size: 64
74
+ num_workers: 12
75
+ wrap: false
76
+ train:
77
+ target: ldm.data.imagenet.ImageNetTrain
78
+ params:
79
+ config:
80
+ size: 256
81
+ validation:
82
+ target: ldm.data.imagenet.ImageNetValidation
83
+ params:
84
+ config:
85
+ size: 256
86
+
87
+
88
+ lightning:
89
+ callbacks:
90
+ image_logger:
91
+ target: main.ImageLogger
92
+ params:
93
+ batch_frequency: 5000
94
+ max_images: 8
95
+ increase_log_steps: False
96
+
97
+ trainer:
98
+ benchmark: True
latent-diffusion/configs/latent-diffusion/cin256-v2.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 0.0001
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0195
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ cond_stage_key: class_label
12
+ image_size: 64
13
+ channels: 3
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss
17
+ use_ema: False
18
+
19
+ unet_config:
20
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
21
+ params:
22
+ image_size: 64
23
+ in_channels: 3
24
+ out_channels: 3
25
+ model_channels: 192
26
+ attention_resolutions:
27
+ - 8
28
+ - 4
29
+ - 2
30
+ num_res_blocks: 2
31
+ channel_mult:
32
+ - 1
33
+ - 2
34
+ - 3
35
+ - 5
36
+ num_heads: 1
37
+ use_spatial_transformer: true
38
+ transformer_depth: 1
39
+ context_dim: 512
40
+
41
+ first_stage_config:
42
+ target: ldm.models.autoencoder.VQModelInterface
43
+ params:
44
+ embed_dim: 3
45
+ n_embed: 8192
46
+ ddconfig:
47
+ double_z: false
48
+ z_channels: 3
49
+ resolution: 256
50
+ in_channels: 3
51
+ out_ch: 3
52
+ ch: 128
53
+ ch_mult:
54
+ - 1
55
+ - 2
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: []
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.ClassEmbedder
65
+ params:
66
+ n_classes: 1001
67
+ embed_dim: 512
68
+ key: class_label
latent-diffusion/configs/latent-diffusion/ffhq-ldm-vq-4.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 2.0e-06
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0195
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ image_size: 64
12
+ channels: 3
13
+ monitor: val/loss_simple_ema
14
+ unet_config:
15
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
16
+ params:
17
+ image_size: 64
18
+ in_channels: 3
19
+ out_channels: 3
20
+ model_channels: 224
21
+ attention_resolutions:
22
+ # note: this isn\t actually the resolution but
23
+ # the downsampling factor, i.e. this corresnponds to
24
+ # attention on spatial resolution 8,16,32, as the
25
+ # spatial reolution of the latents is 64 for f4
26
+ - 8
27
+ - 4
28
+ - 2
29
+ num_res_blocks: 2
30
+ channel_mult:
31
+ - 1
32
+ - 2
33
+ - 3
34
+ - 4
35
+ num_head_channels: 32
36
+ first_stage_config:
37
+ target: ldm.models.autoencoder.VQModelInterface
38
+ params:
39
+ embed_dim: 3
40
+ n_embed: 8192
41
+ ckpt_path: configs/first_stage_models/vq-f4/model.yaml
42
+ ddconfig:
43
+ double_z: false
44
+ z_channels: 3
45
+ resolution: 256
46
+ in_channels: 3
47
+ out_ch: 3
48
+ ch: 128
49
+ ch_mult:
50
+ - 1
51
+ - 2
52
+ - 4
53
+ num_res_blocks: 2
54
+ attn_resolutions: []
55
+ dropout: 0.0
56
+ lossconfig:
57
+ target: torch.nn.Identity
58
+ cond_stage_config: __is_unconditional__
59
+ data:
60
+ target: main.DataModuleFromConfig
61
+ params:
62
+ batch_size: 42
63
+ num_workers: 5
64
+ wrap: false
65
+ train:
66
+ target: taming.data.faceshq.FFHQTrain
67
+ params:
68
+ size: 256
69
+ validation:
70
+ target: taming.data.faceshq.FFHQValidation
71
+ params:
72
+ size: 256
73
+
74
+
75
+ lightning:
76
+ callbacks:
77
+ image_logger:
78
+ target: main.ImageLogger
79
+ params:
80
+ batch_frequency: 5000
81
+ max_images: 8
82
+ increase_log_steps: False
83
+
84
+ trainer:
85
+ benchmark: True
latent-diffusion/configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 2.0e-06
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0195
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ image_size: 64
12
+ channels: 3
13
+ monitor: val/loss_simple_ema
14
+ unet_config:
15
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
16
+ params:
17
+ image_size: 64
18
+ in_channels: 3
19
+ out_channels: 3
20
+ model_channels: 224
21
+ attention_resolutions:
22
+ # note: this isn\t actually the resolution but
23
+ # the downsampling factor, i.e. this corresnponds to
24
+ # attention on spatial resolution 8,16,32, as the
25
+ # spatial reolution of the latents is 64 for f4
26
+ - 8
27
+ - 4
28
+ - 2
29
+ num_res_blocks: 2
30
+ channel_mult:
31
+ - 1
32
+ - 2
33
+ - 3
34
+ - 4
35
+ num_head_channels: 32
36
+ first_stage_config:
37
+ target: ldm.models.autoencoder.VQModelInterface
38
+ params:
39
+ ckpt_path: configs/first_stage_models/vq-f4/model.yaml
40
+ embed_dim: 3
41
+ n_embed: 8192
42
+ ddconfig:
43
+ double_z: false
44
+ z_channels: 3
45
+ resolution: 256
46
+ in_channels: 3
47
+ out_ch: 3
48
+ ch: 128
49
+ ch_mult:
50
+ - 1
51
+ - 2
52
+ - 4
53
+ num_res_blocks: 2
54
+ attn_resolutions: []
55
+ dropout: 0.0
56
+ lossconfig:
57
+ target: torch.nn.Identity
58
+ cond_stage_config: __is_unconditional__
59
+ data:
60
+ target: main.DataModuleFromConfig
61
+ params:
62
+ batch_size: 48
63
+ num_workers: 5
64
+ wrap: false
65
+ train:
66
+ target: ldm.data.lsun.LSUNBedroomsTrain
67
+ params:
68
+ size: 256
69
+ validation:
70
+ target: ldm.data.lsun.LSUNBedroomsValidation
71
+ params:
72
+ size: 256
73
+
74
+
75
+ lightning:
76
+ callbacks:
77
+ image_logger:
78
+ target: main.ImageLogger
79
+ params:
80
+ batch_frequency: 5000
81
+ max_images: 8
82
+ increase_log_steps: False
83
+
84
+ trainer:
85
+ benchmark: True
latent-diffusion/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.0015
6
+ linear_end: 0.0155
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ loss_type: l1
11
+ first_stage_key: "image"
12
+ cond_stage_key: "image"
13
+ image_size: 32
14
+ channels: 4
15
+ cond_stage_trainable: False
16
+ concat_mode: False
17
+ scale_by_std: True
18
+ monitor: 'val/loss_simple_ema'
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [10000]
24
+ cycle_lengths: [10000000000000]
25
+ f_start: [1.e-6]
26
+ f_max: [1.]
27
+ f_min: [ 1.]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 192
36
+ attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
39
+ num_heads: 8
40
+ use_scale_shift_norm: True
41
+ resblock_updown: True
42
+
43
+ first_stage_config:
44
+ target: ldm.models.autoencoder.AutoencoderKL
45
+ params:
46
+ embed_dim: 4
47
+ monitor: "val/rec_loss"
48
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
49
+ ddconfig:
50
+ double_z: True
51
+ z_channels: 4
52
+ resolution: 256
53
+ in_channels: 3
54
+ out_ch: 3
55
+ ch: 128
56
+ ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
57
+ num_res_blocks: 2
58
+ attn_resolutions: [ ]
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config: "__is_unconditional__"
64
+
65
+ data:
66
+ target: main.DataModuleFromConfig
67
+ params:
68
+ batch_size: 96
69
+ num_workers: 5
70
+ wrap: False
71
+ train:
72
+ target: ldm.data.lsun.LSUNChurchesTrain
73
+ params:
74
+ size: 256
75
+ validation:
76
+ target: ldm.data.lsun.LSUNChurchesValidation
77
+ params:
78
+ size: 256
79
+
80
+ lightning:
81
+ callbacks:
82
+ image_logger:
83
+ target: main.ImageLogger
84
+ params:
85
+ batch_frequency: 5000
86
+ max_images: 8
87
+ increase_log_steps: False
88
+
89
+
90
+ trainer:
91
+ benchmark: True
latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.012
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: image
11
+ cond_stage_key: caption
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ unet_config:
21
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
22
+ params:
23
+ image_size: 32
24
+ in_channels: 4
25
+ out_channels: 4
26
+ model_channels: 320
27
+ attention_resolutions:
28
+ - 4
29
+ - 2
30
+ - 1
31
+ num_res_blocks: 2
32
+ channel_mult:
33
+ - 1
34
+ - 2
35
+ - 4
36
+ - 4
37
+ num_heads: 8
38
+ use_spatial_transformer: true
39
+ transformer_depth: 1
40
+ context_dim: 1280
41
+ use_checkpoint: true
42
+ legacy: False
43
+
44
+ first_stage_config:
45
+ target: ldm.models.autoencoder.AutoencoderKL
46
+ params:
47
+ embed_dim: 4
48
+ monitor: val/rec_loss
49
+ ddconfig:
50
+ double_z: true
51
+ z_channels: 4
52
+ resolution: 256
53
+ in_channels: 3
54
+ out_ch: 3
55
+ ch: 128
56
+ ch_mult:
57
+ - 1
58
+ - 2
59
+ - 4
60
+ - 4
61
+ num_res_blocks: 2
62
+ attn_resolutions: []
63
+ dropout: 0.0
64
+ lossconfig:
65
+ target: torch.nn.Identity
66
+
67
+ cond_stage_config:
68
+ target: ldm.modules.encoders.modules.BERTEmbedder
69
+ params:
70
+ n_embed: 1280
71
+ n_layer: 32
latent-diffusion/environment.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ldm
2
+ channels:
3
+ - pytorch
4
+ - defaults
5
+ dependencies:
6
+ - python=3.8.5
7
+ - pip=20.3
8
+ - cudatoolkit=11.0
9
+ - pytorch=1.7.0
10
+ - torchvision=0.8.1
11
+ - numpy=1.19.2
12
+ - pip:
13
+ - albumentations==0.4.3
14
+ - opencv-python==4.1.2.30
15
+ - pudb==2019.2
16
+ - imageio==2.9.0
17
+ - imageio-ffmpeg==0.4.2
18
+ - pytorch-lightning==1.4.2
19
+ - omegaconf==2.1.1
20
+ - test-tube>=0.7.5
21
+ - streamlit>=0.73.1
22
+ - einops==0.3.0
23
+ - torch-fidelity==0.3.0
24
+ - transformers==4.3.1
25
+ - -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
26
+ - -e git+https://github.com/openai/CLIP.git@main#egg=clip
27
+ - -e .
latent-diffusion/ldm/__pycache__/util.cpython-39.pyc ADDED
Binary file (3.23 kB). View file
 
latent-diffusion/ldm/data/__init__.py ADDED
File without changes
latent-diffusion/ldm/data/base.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
3
+
4
+
5
+ class Txt2ImgIterableBaseDataset(IterableDataset):
6
+ '''
7
+ Define an interface to make the IterableDatasets for text2img data chainable
8
+ '''
9
+ def __init__(self, num_records=0, valid_ids=None, size=256):
10
+ super().__init__()
11
+ self.num_records = num_records
12
+ self.valid_ids = valid_ids
13
+ self.sample_ids = valid_ids
14
+ self.size = size
15
+
16
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
17
+
18
+ def __len__(self):
19
+ return self.num_records
20
+
21
+ @abstractmethod
22
+ def __iter__(self):
23
+ pass
latent-diffusion/ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
latent-diffusion/ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
latent-diffusion/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
latent-diffusion/ldm/models/__pycache__/autoencoder.cpython-39.pyc ADDED
Binary file (13.6 kB). View file
 
latent-diffusion/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
7
+
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+
11
+ from ldm.util import instantiate_from_config
12
+
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def configure_optimizers(self):
198
+ lr_d = self.learning_rate
199
+ lr_g = self.lr_g_factor*self.learning_rate
200
+ print("lr_d", lr_d)
201
+ print("lr_g", lr_g)
202
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
+ list(self.decoder.parameters())+
204
+ list(self.quantize.parameters())+
205
+ list(self.quant_conv.parameters())+
206
+ list(self.post_quant_conv.parameters()),
207
+ lr=lr_g, betas=(0.5, 0.9))
208
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
+ lr=lr_d, betas=(0.5, 0.9))
210
+
211
+ if self.scheduler_config is not None:
212
+ scheduler = instantiate_from_config(self.scheduler_config)
213
+
214
+ print("Setting up LambdaLR scheduler...")
215
+ scheduler = [
216
+ {
217
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
+ 'interval': 'step',
219
+ 'frequency': 1
220
+ },
221
+ {
222
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
+ 'interval': 'step',
224
+ 'frequency': 1
225
+ },
226
+ ]
227
+ return [opt_ae, opt_disc], scheduler
228
+ return [opt_ae, opt_disc], []
229
+
230
+ def get_last_layer(self):
231
+ return self.decoder.conv_out.weight
232
+
233
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
+ log = dict()
235
+ x = self.get_input(batch, self.image_key)
236
+ x = x.to(self.device)
237
+ if only_inputs:
238
+ log["inputs"] = x
239
+ return log
240
+ xrec, _ = self(x)
241
+ if x.shape[1] > 3:
242
+ # colorize with random projection
243
+ assert xrec.shape[1] > 3
244
+ x = self.to_rgb(x)
245
+ xrec = self.to_rgb(xrec)
246
+ log["inputs"] = x
247
+ log["reconstructions"] = xrec
248
+ if plot_ema:
249
+ with self.ema_scope():
250
+ xrec_ema, _ = self(x)
251
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
+ log["reconstructions_ema"] = xrec_ema
253
+ return log
254
+
255
+ def to_rgb(self, x):
256
+ assert self.image_key == "segmentation"
257
+ if not hasattr(self, "colorize"):
258
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
+ x = F.conv2d(x, weight=self.colorize)
260
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
+ return x
262
+
263
+
264
+ class VQModelInterface(VQModel):
265
+ def __init__(self, embed_dim, *args, **kwargs):
266
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
+ self.embed_dim = embed_dim
268
+
269
+ def encode(self, x):
270
+ h = self.encoder(x)
271
+ h = self.quant_conv(h)
272
+ return h
273
+
274
+ def decode(self, h, force_not_quantize=False):
275
+ # also go through quantization layer
276
+ if not force_not_quantize:
277
+ quant, emb_loss, info = self.quantize(h)
278
+ else:
279
+ quant = h
280
+ quant = self.post_quant_conv(quant)
281
+ dec = self.decoder(quant)
282
+ return dec
283
+
284
+
285
+ class AutoencoderKL(pl.LightningModule):
286
+ def __init__(self,
287
+ ddconfig,
288
+ lossconfig,
289
+ embed_dim,
290
+ ckpt_path=None,
291
+ ignore_keys=[],
292
+ image_key="image",
293
+ colorize_nlabels=None,
294
+ monitor=None,
295
+ ):
296
+ super().__init__()
297
+ self.image_key = image_key
298
+ self.encoder = Encoder(**ddconfig)
299
+ self.decoder = Decoder(**ddconfig)
300
+ self.loss = instantiate_from_config(lossconfig)
301
+ assert ddconfig["double_z"]
302
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
+ self.embed_dim = embed_dim
305
+ if colorize_nlabels is not None:
306
+ assert type(colorize_nlabels)==int
307
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
+ if monitor is not None:
309
+ self.monitor = monitor
310
+ if ckpt_path is not None:
311
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
+
313
+ def init_from_ckpt(self, path, ignore_keys=list()):
314
+ sd = torch.load(path, map_location="cpu")["state_dict"]
315
+ keys = list(sd.keys())
316
+ for k in keys:
317
+ for ik in ignore_keys:
318
+ if k.startswith(ik):
319
+ print("Deleting key {} from state_dict.".format(k))
320
+ del sd[k]
321
+ self.load_state_dict(sd, strict=False)
322
+ print(f"Restored from {path}")
323
+
324
+ def encode(self, x):
325
+ h = self.encoder(x)
326
+ moments = self.quant_conv(h)
327
+ posterior = DiagonalGaussianDistribution(moments)
328
+ return posterior
329
+
330
+ def decode(self, z):
331
+ z = self.post_quant_conv(z)
332
+ dec = self.decoder(z)
333
+ return dec
334
+
335
+ def forward(self, input, sample_posterior=True):
336
+ posterior = self.encode(input)
337
+ if sample_posterior:
338
+ z = posterior.sample()
339
+ else:
340
+ z = posterior.mode()
341
+ dec = self.decode(z)
342
+ return dec, posterior
343
+
344
+ def get_input(self, batch, k):
345
+ x = batch[k]
346
+ if len(x.shape) == 3:
347
+ x = x[..., None]
348
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
+ return x
350
+
351
+ def training_step(self, batch, batch_idx, optimizer_idx):
352
+ inputs = self.get_input(batch, self.image_key)
353
+ reconstructions, posterior = self(inputs)
354
+
355
+ if optimizer_idx == 0:
356
+ # train encoder+decoder+logvar
357
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
+ last_layer=self.get_last_layer(), split="train")
359
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
+ return aeloss
362
+
363
+ if optimizer_idx == 1:
364
+ # train the discriminator
365
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
+ last_layer=self.get_last_layer(), split="train")
367
+
368
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
+ return discloss
371
+
372
+ def validation_step(self, batch, batch_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
+ last_layer=self.get_last_layer(), split="val")
377
+
378
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
+ last_layer=self.get_last_layer(), split="val")
380
+
381
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
+ self.log_dict(log_dict_ae)
383
+ self.log_dict(log_dict_disc)
384
+ return self.log_dict
385
+
386
+ def configure_optimizers(self):
387
+ lr = self.learning_rate
388
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
+ list(self.decoder.parameters())+
390
+ list(self.quant_conv.parameters())+
391
+ list(self.post_quant_conv.parameters()),
392
+ lr=lr, betas=(0.5, 0.9))
393
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
+ lr=lr, betas=(0.5, 0.9))
395
+ return [opt_ae, opt_disc], []
396
+
397
+ def get_last_layer(self):
398
+ return self.decoder.conv_out.weight
399
+
400
+ @torch.no_grad()
401
+ def log_images(self, batch, only_inputs=False, **kwargs):
402
+ log = dict()
403
+ x = self.get_input(batch, self.image_key)
404
+ x = x.to(self.device)
405
+ if not only_inputs:
406
+ xrec, posterior = self(x)
407
+ if x.shape[1] > 3:
408
+ # colorize with random projection
409
+ assert xrec.shape[1] > 3
410
+ x = self.to_rgb(x)
411
+ xrec = self.to_rgb(xrec)
412
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
+ log["reconstructions"] = xrec
414
+ log["inputs"] = x
415
+ return log
416
+
417
+ def to_rgb(self, x):
418
+ assert self.image_key == "segmentation"
419
+ if not hasattr(self, "colorize"):
420
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
+ x = F.conv2d(x, weight=self.colorize)
422
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
+ return x
424
+
425
+
426
+ class IdentityFirstStage(torch.nn.Module):
427
+ def __init__(self, *args, vq_interface=False, **kwargs):
428
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
+ super().__init__()
430
+
431
+ def encode(self, x, *args, **kwargs):
432
+ return x
433
+
434
+ def decode(self, x, *args, **kwargs):
435
+ return x
436
+
437
+ def quantize(self, x, *args, **kwargs):
438
+ if self.vq_interface:
439
+ return x, None, [None, None, None]
440
+ return x
441
+
442
+ def forward(self, x, *args, **kwargs):
443
+ return x
latent-diffusion/ldm/models/diffusion/__init__.py ADDED
File without changes
latent-diffusion/ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (193 Bytes). View file
 
latent-diffusion/ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc ADDED
Binary file (6.19 kB). View file
 
latent-diffusion/ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc ADDED
Binary file (44 kB). View file
 
latent-diffusion/ldm/models/diffusion/__pycache__/plms.cpython-39.pyc ADDED
Binary file (7.33 kB). View file
 
latent-diffusion/ldm/models/diffusion/classifier.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ from omegaconf import OmegaConf
5
+ from torch.nn import functional as F
6
+ from torch.optim import AdamW
7
+ from torch.optim.lr_scheduler import LambdaLR
8
+ from copy import deepcopy
9
+ from einops import rearrange
10
+ from glob import glob
11
+ from natsort import natsorted
12
+
13
+ from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
14
+ from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
15
+
16
+ __models__ = {
17
+ 'class_label': EncoderUNetModel,
18
+ 'segmentation': UNetModel
19
+ }
20
+
21
+
22
+ def disabled_train(self, mode=True):
23
+ """Overwrite model.train with this function to make sure train/eval mode
24
+ does not change anymore."""
25
+ return self
26
+
27
+
28
+ class NoisyLatentImageClassifier(pl.LightningModule):
29
+
30
+ def __init__(self,
31
+ diffusion_path,
32
+ num_classes,
33
+ ckpt_path=None,
34
+ pool='attention',
35
+ label_key=None,
36
+ diffusion_ckpt_path=None,
37
+ scheduler_config=None,
38
+ weight_decay=1.e-2,
39
+ log_steps=10,
40
+ monitor='val/loss',
41
+ *args,
42
+ **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ self.num_classes = num_classes
45
+ # get latest config of diffusion model
46
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
47
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
48
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
49
+ self.load_diffusion()
50
+
51
+ self.monitor = monitor
52
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
53
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
54
+ self.log_steps = log_steps
55
+
56
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
57
+ else self.diffusion_model.cond_stage_key
58
+
59
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
60
+
61
+ if self.label_key not in __models__:
62
+ raise NotImplementedError()
63
+
64
+ self.load_classifier(ckpt_path, pool)
65
+
66
+ self.scheduler_config = scheduler_config
67
+ self.use_scheduler = self.scheduler_config is not None
68
+ self.weight_decay = weight_decay
69
+
70
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
71
+ sd = torch.load(path, map_location="cpu")
72
+ if "state_dict" in list(sd.keys()):
73
+ sd = sd["state_dict"]
74
+ keys = list(sd.keys())
75
+ for k in keys:
76
+ for ik in ignore_keys:
77
+ if k.startswith(ik):
78
+ print("Deleting key {} from state_dict.".format(k))
79
+ del sd[k]
80
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
81
+ sd, strict=False)
82
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
83
+ if len(missing) > 0:
84
+ print(f"Missing Keys: {missing}")
85
+ if len(unexpected) > 0:
86
+ print(f"Unexpected Keys: {unexpected}")
87
+
88
+ def load_diffusion(self):
89
+ model = instantiate_from_config(self.diffusion_config)
90
+ self.diffusion_model = model.eval()
91
+ self.diffusion_model.train = disabled_train
92
+ for param in self.diffusion_model.parameters():
93
+ param.requires_grad = False
94
+
95
+ def load_classifier(self, ckpt_path, pool):
96
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
97
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
98
+ model_config.out_channels = self.num_classes
99
+ if self.label_key == 'class_label':
100
+ model_config.pool = pool
101
+
102
+ self.model = __models__[self.label_key](**model_config)
103
+ if ckpt_path is not None:
104
+ print('#####################################################################')
105
+ print(f'load from ckpt "{ckpt_path}"')
106
+ print('#####################################################################')
107
+ self.init_from_ckpt(ckpt_path)
108
+
109
+ @torch.no_grad()
110
+ def get_x_noisy(self, x, t, noise=None):
111
+ noise = default(noise, lambda: torch.randn_like(x))
112
+ continuous_sqrt_alpha_cumprod = None
113
+ if self.diffusion_model.use_continuous_noise:
114
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
115
+ # todo: make sure t+1 is correct here
116
+
117
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
118
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
119
+
120
+ def forward(self, x_noisy, t, *args, **kwargs):
121
+ return self.model(x_noisy, t)
122
+
123
+ @torch.no_grad()
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = rearrange(x, 'b h w c -> b c h w')
129
+ x = x.to(memory_format=torch.contiguous_format).float()
130
+ return x
131
+
132
+ @torch.no_grad()
133
+ def get_conditioning(self, batch, k=None):
134
+ if k is None:
135
+ k = self.label_key
136
+ assert k is not None, 'Needs to provide label key'
137
+
138
+ targets = batch[k].to(self.device)
139
+
140
+ if self.label_key == 'segmentation':
141
+ targets = rearrange(targets, 'b h w c -> b c h w')
142
+ for down in range(self.numd):
143
+ h, w = targets.shape[-2:]
144
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
145
+
146
+ # targets = rearrange(targets,'b c h w -> b h w c')
147
+
148
+ return targets
149
+
150
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
151
+ _, top_ks = torch.topk(logits, k, dim=1)
152
+ if reduction == "mean":
153
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
154
+ elif reduction == "none":
155
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
156
+
157
+ def on_train_epoch_start(self):
158
+ # save some memory
159
+ self.diffusion_model.model.to('cpu')
160
+
161
+ @torch.no_grad()
162
+ def write_logs(self, loss, logits, targets):
163
+ log_prefix = 'train' if self.training else 'val'
164
+ log = {}
165
+ log[f"{log_prefix}/loss"] = loss.mean()
166
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
167
+ logits, targets, k=1, reduction="mean"
168
+ )
169
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
170
+ logits, targets, k=5, reduction="mean"
171
+ )
172
+
173
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
174
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
175
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
176
+ lr = self.optimizers().param_groups[0]['lr']
177
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
178
+
179
+ def shared_step(self, batch, t=None):
180
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
181
+ targets = self.get_conditioning(batch)
182
+ if targets.dim() == 4:
183
+ targets = targets.argmax(dim=1)
184
+ if t is None:
185
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
186
+ else:
187
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
188
+ x_noisy = self.get_x_noisy(x, t)
189
+ logits = self(x_noisy, t)
190
+
191
+ loss = F.cross_entropy(logits, targets, reduction='none')
192
+
193
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
194
+
195
+ loss = loss.mean()
196
+ return loss, logits, x_noisy, targets
197
+
198
+ def training_step(self, batch, batch_idx):
199
+ loss, *_ = self.shared_step(batch)
200
+ return loss
201
+
202
+ def reset_noise_accs(self):
203
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
204
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
205
+
206
+ def on_validation_start(self):
207
+ self.reset_noise_accs()
208
+
209
+ @torch.no_grad()
210
+ def validation_step(self, batch, batch_idx):
211
+ loss, *_ = self.shared_step(batch)
212
+
213
+ for t in self.noisy_acc:
214
+ _, logits, _, targets = self.shared_step(batch, t)
215
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
216
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
217
+
218
+ return loss
219
+
220
+ def configure_optimizers(self):
221
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
222
+
223
+ if self.use_scheduler:
224
+ scheduler = instantiate_from_config(self.scheduler_config)
225
+
226
+ print("Setting up LambdaLR scheduler...")
227
+ scheduler = [
228
+ {
229
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
230
+ 'interval': 'step',
231
+ 'frequency': 1
232
+ }]
233
+ return [optimizer], scheduler
234
+
235
+ return optimizer
236
+
237
+ @torch.no_grad()
238
+ def log_images(self, batch, N=8, *args, **kwargs):
239
+ log = dict()
240
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
241
+ log['inputs'] = x
242
+
243
+ y = self.get_conditioning(batch)
244
+
245
+ if self.label_key == 'class_label':
246
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
247
+ log['labels'] = y
248
+
249
+ if ismap(y):
250
+ log['labels'] = self.diffusion_model.to_rgb(y)
251
+
252
+ for step in range(self.log_steps):
253
+ current_time = step * self.log_time_interval
254
+
255
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
256
+
257
+ log[f'inputs@t{current_time}'] = x_noisy
258
+
259
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
260
+ pred = rearrange(pred, 'b h w c -> b c h w')
261
+
262
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
263
+
264
+ for key in log:
265
+ log[key] = log[key][:N]
266
+
267
+ return log
latent-diffusion/ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+
10
+
11
+ class DDIMSampler(object):
12
+ def __init__(self, model, schedule="linear", **kwargs):
13
+ super().__init__()
14
+ self.model = model
15
+ self.ddpm_num_timesteps = model.num_timesteps
16
+ self.schedule = schedule
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
26
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
27
+ alphas_cumprod = self.model.alphas_cumprod
28
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
29
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
30
+
31
+ self.register_buffer('betas', to_torch(self.model.betas))
32
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
33
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
34
+
35
+ # calculations for diffusion q(x_t | x_{t-1}) and others
36
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
37
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
41
+
42
+ # ddim sampling parameters
43
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
44
+ ddim_timesteps=self.ddim_timesteps,
45
+ eta=ddim_eta,verbose=verbose)
46
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
47
+ self.register_buffer('ddim_alphas', ddim_alphas)
48
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
49
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
50
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
51
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
52
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
53
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
54
+
55
+ @torch.no_grad()
56
+ def sample(self,
57
+ S,
58
+ batch_size,
59
+ shape,
60
+ conditioning=None,
61
+ callback=None,
62
+ normals_sequence=None,
63
+ img_callback=None,
64
+ quantize_x0=False,
65
+ eta=0.,
66
+ mask=None,
67
+ x0=None,
68
+ temperature=1.,
69
+ noise_dropout=0.,
70
+ score_corrector=None,
71
+ corrector_kwargs=None,
72
+ verbose=True,
73
+ x_T=None,
74
+ log_every_t=100,
75
+ unconditional_guidance_scale=1.,
76
+ unconditional_conditioning=None,
77
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
78
+ **kwargs
79
+ ):
80
+ if conditioning is not None:
81
+ if isinstance(conditioning, dict):
82
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
83
+ if cbs != batch_size:
84
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
85
+ else:
86
+ if conditioning.shape[0] != batch_size:
87
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
88
+
89
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
90
+ # sampling
91
+ C, H, W = shape
92
+ size = (batch_size, C, H, W)
93
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
94
+
95
+ samples, intermediates = self.ddim_sampling(conditioning, size,
96
+ callback=callback,
97
+ img_callback=img_callback,
98
+ quantize_denoised=quantize_x0,
99
+ mask=mask, x0=x0,
100
+ ddim_use_original_steps=False,
101
+ noise_dropout=noise_dropout,
102
+ temperature=temperature,
103
+ score_corrector=score_corrector,
104
+ corrector_kwargs=corrector_kwargs,
105
+ x_T=x_T,
106
+ log_every_t=log_every_t,
107
+ unconditional_guidance_scale=unconditional_guidance_scale,
108
+ unconditional_conditioning=unconditional_conditioning,
109
+ )
110
+ return samples, intermediates
111
+
112
+ @torch.no_grad()
113
+ def ddim_sampling(self, cond, shape,
114
+ x_T=None, ddim_use_original_steps=False,
115
+ callback=None, timesteps=None, quantize_denoised=False,
116
+ mask=None, x0=None, img_callback=None, log_every_t=100,
117
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
118
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
119
+ device = self.model.betas.device
120
+ b = shape[0]
121
+ if x_T is None:
122
+ img = torch.randn(shape, device=device)
123
+ else:
124
+ img = x_T
125
+
126
+ if timesteps is None:
127
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
128
+ elif timesteps is not None and not ddim_use_original_steps:
129
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
130
+ timesteps = self.ddim_timesteps[:subset_end]
131
+
132
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
133
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
134
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
135
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
136
+
137
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
138
+
139
+ for i, step in enumerate(iterator):
140
+ index = total_steps - i - 1
141
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
142
+
143
+ if mask is not None:
144
+ assert x0 is not None
145
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
146
+ img = img_orig * mask + (1. - mask) * img
147
+
148
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
149
+ quantize_denoised=quantize_denoised, temperature=temperature,
150
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
151
+ corrector_kwargs=corrector_kwargs,
152
+ unconditional_guidance_scale=unconditional_guidance_scale,
153
+ unconditional_conditioning=unconditional_conditioning)
154
+ img, pred_x0 = outs
155
+ if callback: callback(i)
156
+ if img_callback: img_callback(pred_x0, i)
157
+
158
+ if index % log_every_t == 0 or index == total_steps - 1:
159
+ intermediates['x_inter'].append(img)
160
+ intermediates['pred_x0'].append(pred_x0)
161
+
162
+ return img, intermediates
163
+
164
+ @torch.no_grad()
165
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
166
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
167
+ unconditional_guidance_scale=1., unconditional_conditioning=None):
168
+ b, *_, device = *x.shape, x.device
169
+
170
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
171
+ e_t = self.model.apply_model(x, t, c)
172
+ else:
173
+ x_in = torch.cat([x] * 2)
174
+ t_in = torch.cat([t] * 2)
175
+ c_in = torch.cat([unconditional_conditioning, c])
176
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
177
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
178
+
179
+ if score_corrector is not None:
180
+ assert self.model.parameterization == "eps"
181
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
182
+
183
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
184
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
185
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
186
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
187
+ # select parameters corresponding to the currently considered timestep
188
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
189
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
190
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
191
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
192
+
193
+ # current prediction for x_0
194
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
195
+ if quantize_denoised:
196
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
197
+ # direction pointing to x_t
198
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
199
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
200
+ if noise_dropout > 0.:
201
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
202
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
203
+ return x_prev, pred_x0
latent-diffusion/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager
16
+ from functools import partial
17
+ from tqdm import tqdm
18
+ from torchvision.utils import make_grid
19
+ from pytorch_lightning.utilities.distributed import rank_zero_only
20
+
21
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
22
+ from ldm.modules.ema import LitEma
23
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
24
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
25
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
26
+ from ldm.models.diffusion.ddim import DDIMSampler
27
+
28
+
29
+ __conditioning_keys__ = {'concat': 'c_concat',
30
+ 'crossattn': 'c_crossattn',
31
+ 'adm': 'y'}
32
+
33
+
34
+ def disabled_train(self, mode=True):
35
+ """Overwrite model.train with this function to make sure train/eval mode
36
+ does not change anymore."""
37
+ return self
38
+
39
+
40
+ def uniform_on_device(r1, r2, shape, device):
41
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
42
+
43
+
44
+ class DDPM(pl.LightningModule):
45
+ # classic DDPM with Gaussian diffusion, in image space
46
+ def __init__(self,
47
+ unet_config,
48
+ timesteps=1000,
49
+ beta_schedule="linear",
50
+ loss_type="l2",
51
+ ckpt_path=None,
52
+ ignore_keys=[],
53
+ load_only_unet=False,
54
+ monitor="val/loss",
55
+ use_ema=True,
56
+ first_stage_key="image",
57
+ image_size=256,
58
+ channels=3,
59
+ log_every_t=100,
60
+ clip_denoised=True,
61
+ linear_start=1e-4,
62
+ linear_end=2e-2,
63
+ cosine_s=8e-3,
64
+ given_betas=None,
65
+ original_elbo_weight=0.,
66
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
67
+ l_simple_weight=1.,
68
+ conditioning_key=None,
69
+ parameterization="eps", # all assuming fixed variance schedules
70
+ scheduler_config=None,
71
+ use_positional_encodings=False,
72
+ learn_logvar=False,
73
+ logvar_init=0.,
74
+ ):
75
+ super().__init__()
76
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
77
+ self.parameterization = parameterization
78
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
79
+ self.cond_stage_model = None
80
+ self.clip_denoised = clip_denoised
81
+ self.log_every_t = log_every_t
82
+ self.first_stage_key = first_stage_key
83
+ self.image_size = image_size # try conv?
84
+ self.channels = channels
85
+ self.use_positional_encodings = use_positional_encodings
86
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
87
+ count_params(self.model, verbose=True)
88
+ self.use_ema = use_ema
89
+ if self.use_ema:
90
+ self.model_ema = LitEma(self.model)
91
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
92
+
93
+ self.use_scheduler = scheduler_config is not None
94
+ if self.use_scheduler:
95
+ self.scheduler_config = scheduler_config
96
+
97
+ self.v_posterior = v_posterior
98
+ self.original_elbo_weight = original_elbo_weight
99
+ self.l_simple_weight = l_simple_weight
100
+
101
+ if monitor is not None:
102
+ self.monitor = monitor
103
+ if ckpt_path is not None:
104
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
105
+
106
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
107
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
108
+
109
+ self.loss_type = loss_type
110
+
111
+ self.learn_logvar = learn_logvar
112
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
113
+ if self.learn_logvar:
114
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
115
+
116
+
117
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
118
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
119
+ if exists(given_betas):
120
+ betas = given_betas
121
+ else:
122
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
123
+ cosine_s=cosine_s)
124
+ alphas = 1. - betas
125
+ alphas_cumprod = np.cumprod(alphas, axis=0)
126
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
127
+
128
+ timesteps, = betas.shape
129
+ self.num_timesteps = int(timesteps)
130
+ self.linear_start = linear_start
131
+ self.linear_end = linear_end
132
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
133
+
134
+ to_torch = partial(torch.tensor, dtype=torch.float32)
135
+
136
+ self.register_buffer('betas', to_torch(betas))
137
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
138
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
139
+
140
+ # calculations for diffusion q(x_t | x_{t-1}) and others
141
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
142
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
143
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
144
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
145
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
146
+
147
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
148
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
149
+ 1. - alphas_cumprod) + self.v_posterior * betas
150
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
151
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
152
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
153
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
154
+ self.register_buffer('posterior_mean_coef1', to_torch(
155
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
156
+ self.register_buffer('posterior_mean_coef2', to_torch(
157
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
158
+
159
+ if self.parameterization == "eps":
160
+ lvlb_weights = self.betas ** 2 / (
161
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
162
+ elif self.parameterization == "x0":
163
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
164
+ else:
165
+ raise NotImplementedError("mu not supported")
166
+ # TODO how to choose this term
167
+ lvlb_weights[0] = lvlb_weights[1]
168
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
169
+ assert not torch.isnan(self.lvlb_weights).all()
170
+
171
+ @contextmanager
172
+ def ema_scope(self, context=None):
173
+ if self.use_ema:
174
+ self.model_ema.store(self.model.parameters())
175
+ self.model_ema.copy_to(self.model)
176
+ if context is not None:
177
+ print(f"{context}: Switched to EMA weights")
178
+ try:
179
+ yield None
180
+ finally:
181
+ if self.use_ema:
182
+ self.model_ema.restore(self.model.parameters())
183
+ if context is not None:
184
+ print(f"{context}: Restored training weights")
185
+
186
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
187
+ sd = torch.load(path, map_location="cpu")
188
+ if "state_dict" in list(sd.keys()):
189
+ sd = sd["state_dict"]
190
+ keys = list(sd.keys())
191
+ for k in keys:
192
+ for ik in ignore_keys:
193
+ if k.startswith(ik):
194
+ print("Deleting key {} from state_dict.".format(k))
195
+ del sd[k]
196
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
197
+ sd, strict=False)
198
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
199
+ if len(missing) > 0:
200
+ print(f"Missing Keys: {missing}")
201
+ if len(unexpected) > 0:
202
+ print(f"Unexpected Keys: {unexpected}")
203
+
204
+ def q_mean_variance(self, x_start, t):
205
+ """
206
+ Get the distribution q(x_t | x_0).
207
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
208
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
209
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
210
+ """
211
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
212
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
213
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
214
+ return mean, variance, log_variance
215
+
216
+ def predict_start_from_noise(self, x_t, t, noise):
217
+ return (
218
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
219
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
220
+ )
221
+
222
+ def q_posterior(self, x_start, x_t, t):
223
+ posterior_mean = (
224
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
225
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
226
+ )
227
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
228
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
229
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
230
+
231
+ def p_mean_variance(self, x, t, clip_denoised: bool):
232
+ model_out = self.model(x, t)
233
+ if self.parameterization == "eps":
234
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
235
+ elif self.parameterization == "x0":
236
+ x_recon = model_out
237
+ if clip_denoised:
238
+ x_recon.clamp_(-1., 1.)
239
+
240
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
241
+ return model_mean, posterior_variance, posterior_log_variance
242
+
243
+ @torch.no_grad()
244
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
245
+ b, *_, device = *x.shape, x.device
246
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
247
+ noise = noise_like(x.shape, device, repeat_noise)
248
+ # no noise when t == 0
249
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
250
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
251
+
252
+ @torch.no_grad()
253
+ def p_sample_loop(self, shape, return_intermediates=False):
254
+ device = self.betas.device
255
+ b = shape[0]
256
+ img = torch.randn(shape, device=device)
257
+ intermediates = [img]
258
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
259
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
260
+ clip_denoised=self.clip_denoised)
261
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
262
+ intermediates.append(img)
263
+ if return_intermediates:
264
+ return img, intermediates
265
+ return img
266
+
267
+ @torch.no_grad()
268
+ def sample(self, batch_size=16, return_intermediates=False):
269
+ image_size = self.image_size
270
+ channels = self.channels
271
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
272
+ return_intermediates=return_intermediates)
273
+
274
+ def q_sample(self, x_start, t, noise=None):
275
+ noise = default(noise, lambda: torch.randn_like(x_start))
276
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
277
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
278
+
279
+ def get_loss(self, pred, target, mean=True):
280
+ if self.loss_type == 'l1':
281
+ loss = (target - pred).abs()
282
+ if mean:
283
+ loss = loss.mean()
284
+ elif self.loss_type == 'l2':
285
+ if mean:
286
+ loss = torch.nn.functional.mse_loss(target, pred)
287
+ else:
288
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
289
+ else:
290
+ raise NotImplementedError("unknown loss type '{loss_type}'")
291
+
292
+ return loss
293
+
294
+ def p_losses(self, x_start, t, noise=None):
295
+ noise = default(noise, lambda: torch.randn_like(x_start))
296
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
297
+ model_out = self.model(x_noisy, t)
298
+
299
+ loss_dict = {}
300
+ if self.parameterization == "eps":
301
+ target = noise
302
+ elif self.parameterization == "x0":
303
+ target = x_start
304
+ else:
305
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
306
+
307
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
308
+
309
+ log_prefix = 'train' if self.training else 'val'
310
+
311
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
312
+ loss_simple = loss.mean() * self.l_simple_weight
313
+
314
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
315
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
316
+
317
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
318
+
319
+ loss_dict.update({f'{log_prefix}/loss': loss})
320
+
321
+ return loss, loss_dict
322
+
323
+ def forward(self, x, *args, **kwargs):
324
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
325
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
326
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
327
+ return self.p_losses(x, t, *args, **kwargs)
328
+
329
+ def get_input(self, batch, k):
330
+ x = batch[k]
331
+ if len(x.shape) == 3:
332
+ x = x[..., None]
333
+ x = rearrange(x, 'b h w c -> b c h w')
334
+ x = x.to(memory_format=torch.contiguous_format).float()
335
+ return x
336
+
337
+ def shared_step(self, batch):
338
+ x = self.get_input(batch, self.first_stage_key)
339
+ loss, loss_dict = self(x)
340
+ return loss, loss_dict
341
+
342
+ def training_step(self, batch, batch_idx):
343
+ loss, loss_dict = self.shared_step(batch)
344
+
345
+ self.log_dict(loss_dict, prog_bar=True,
346
+ logger=True, on_step=True, on_epoch=True)
347
+
348
+ self.log("global_step", self.global_step,
349
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
350
+
351
+ if self.use_scheduler:
352
+ lr = self.optimizers().param_groups[0]['lr']
353
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
354
+
355
+ return loss
356
+
357
+ @torch.no_grad()
358
+ def validation_step(self, batch, batch_idx):
359
+ _, loss_dict_no_ema = self.shared_step(batch)
360
+ with self.ema_scope():
361
+ _, loss_dict_ema = self.shared_step(batch)
362
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
363
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
364
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
365
+
366
+ def on_train_batch_end(self, *args, **kwargs):
367
+ if self.use_ema:
368
+ self.model_ema(self.model)
369
+
370
+ def _get_rows_from_list(self, samples):
371
+ n_imgs_per_row = len(samples)
372
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
373
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
374
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
375
+ return denoise_grid
376
+
377
+ @torch.no_grad()
378
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
379
+ log = dict()
380
+ x = self.get_input(batch, self.first_stage_key)
381
+ N = min(x.shape[0], N)
382
+ n_row = min(x.shape[0], n_row)
383
+ x = x.to(self.device)[:N]
384
+ log["inputs"] = x
385
+
386
+ # get diffusion row
387
+ diffusion_row = list()
388
+ x_start = x[:n_row]
389
+
390
+ for t in range(self.num_timesteps):
391
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
392
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
393
+ t = t.to(self.device).long()
394
+ noise = torch.randn_like(x_start)
395
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
396
+ diffusion_row.append(x_noisy)
397
+
398
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
399
+
400
+ if sample:
401
+ # get denoise row
402
+ with self.ema_scope("Plotting"):
403
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
404
+
405
+ log["samples"] = samples
406
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
407
+
408
+ if return_keys:
409
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
410
+ return log
411
+ else:
412
+ return {key: log[key] for key in return_keys}
413
+ return log
414
+
415
+ def configure_optimizers(self):
416
+ lr = self.learning_rate
417
+ params = list(self.model.parameters())
418
+ if self.learn_logvar:
419
+ params = params + [self.logvar]
420
+ opt = torch.optim.AdamW(params, lr=lr)
421
+ return opt
422
+
423
+
424
+ class LatentDiffusion(DDPM):
425
+ """main class"""
426
+ def __init__(self,
427
+ first_stage_config,
428
+ cond_stage_config,
429
+ num_timesteps_cond=None,
430
+ cond_stage_key="image",
431
+ cond_stage_trainable=False,
432
+ concat_mode=True,
433
+ cond_stage_forward=None,
434
+ conditioning_key=None,
435
+ scale_factor=1.0,
436
+ scale_by_std=False,
437
+ *args, **kwargs):
438
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
439
+ self.scale_by_std = scale_by_std
440
+ assert self.num_timesteps_cond <= kwargs['timesteps']
441
+ # for backwards compatibility after implementation of DiffusionWrapper
442
+ if conditioning_key is None:
443
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
444
+ if cond_stage_config == '__is_unconditional__':
445
+ conditioning_key = None
446
+ ckpt_path = kwargs.pop("ckpt_path", None)
447
+ ignore_keys = kwargs.pop("ignore_keys", [])
448
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
449
+ self.concat_mode = concat_mode
450
+ self.cond_stage_trainable = cond_stage_trainable
451
+ self.cond_stage_key = cond_stage_key
452
+ try:
453
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
454
+ except:
455
+ self.num_downs = 0
456
+ if not scale_by_std:
457
+ self.scale_factor = scale_factor
458
+ else:
459
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
460
+ self.instantiate_first_stage(first_stage_config)
461
+ self.instantiate_cond_stage(cond_stage_config)
462
+ self.cond_stage_forward = cond_stage_forward
463
+ self.clip_denoised = False
464
+ self.bbox_tokenizer = None
465
+
466
+ self.restarted_from_ckpt = False
467
+ if ckpt_path is not None:
468
+ self.init_from_ckpt(ckpt_path, ignore_keys)
469
+ self.restarted_from_ckpt = True
470
+
471
+ def make_cond_schedule(self, ):
472
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
473
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
474
+ self.cond_ids[:self.num_timesteps_cond] = ids
475
+
476
+ @rank_zero_only
477
+ @torch.no_grad()
478
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
479
+ # only for very first batch
480
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
481
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
482
+ # set rescale weight to 1./std of encodings
483
+ print("### USING STD-RESCALING ###")
484
+ x = super().get_input(batch, self.first_stage_key)
485
+ x = x.to(self.device)
486
+ encoder_posterior = self.encode_first_stage(x)
487
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
488
+ del self.scale_factor
489
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
490
+ print(f"setting self.scale_factor to {self.scale_factor}")
491
+ print("### USING STD-RESCALING ###")
492
+
493
+ def register_schedule(self,
494
+ given_betas=None, beta_schedule="linear", timesteps=1000,
495
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
496
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
497
+
498
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
499
+ if self.shorten_cond_schedule:
500
+ self.make_cond_schedule()
501
+
502
+ def instantiate_first_stage(self, config):
503
+ model = instantiate_from_config(config)
504
+ self.first_stage_model = model.eval()
505
+ self.first_stage_model.train = disabled_train
506
+ for param in self.first_stage_model.parameters():
507
+ param.requires_grad = False
508
+
509
+ def instantiate_cond_stage(self, config):
510
+ if not self.cond_stage_trainable:
511
+ if config == "__is_first_stage__":
512
+ print("Using first stage also as cond stage.")
513
+ self.cond_stage_model = self.first_stage_model
514
+ elif config == "__is_unconditional__":
515
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
516
+ self.cond_stage_model = None
517
+ # self.be_unconditional = True
518
+ else:
519
+ model = instantiate_from_config(config)
520
+ self.cond_stage_model = model.eval()
521
+ self.cond_stage_model.train = disabled_train
522
+ for param in self.cond_stage_model.parameters():
523
+ param.requires_grad = False
524
+ else:
525
+ assert config != '__is_first_stage__'
526
+ assert config != '__is_unconditional__'
527
+ model = instantiate_from_config(config)
528
+ self.cond_stage_model = model
529
+
530
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
531
+ denoise_row = []
532
+ for zd in tqdm(samples, desc=desc):
533
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
534
+ force_not_quantize=force_no_decoder_quantization))
535
+ n_imgs_per_row = len(denoise_row)
536
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
537
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
538
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
539
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
540
+ return denoise_grid
541
+
542
+ def get_first_stage_encoding(self, encoder_posterior):
543
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
544
+ z = encoder_posterior.sample()
545
+ elif isinstance(encoder_posterior, torch.Tensor):
546
+ z = encoder_posterior
547
+ else:
548
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
549
+ return self.scale_factor * z
550
+
551
+ def get_learned_conditioning(self, c):
552
+ if self.cond_stage_forward is None:
553
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
554
+ c = self.cond_stage_model.encode(c)
555
+ if isinstance(c, DiagonalGaussianDistribution):
556
+ c = c.mode()
557
+ else:
558
+ c = self.cond_stage_model(c)
559
+ else:
560
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
561
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
562
+ return c
563
+
564
+ def meshgrid(self, h, w):
565
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
566
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
567
+
568
+ arr = torch.cat([y, x], dim=-1)
569
+ return arr
570
+
571
+ def delta_border(self, h, w):
572
+ """
573
+ :param h: height
574
+ :param w: width
575
+ :return: normalized distance to image border,
576
+ wtith min distance = 0 at border and max dist = 0.5 at image center
577
+ """
578
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
579
+ arr = self.meshgrid(h, w) / lower_right_corner
580
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
581
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
582
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
583
+ return edge_dist
584
+
585
+ def get_weighting(self, h, w, Ly, Lx, device):
586
+ weighting = self.delta_border(h, w)
587
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
588
+ self.split_input_params["clip_max_weight"], )
589
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
590
+
591
+ if self.split_input_params["tie_braker"]:
592
+ L_weighting = self.delta_border(Ly, Lx)
593
+ L_weighting = torch.clip(L_weighting,
594
+ self.split_input_params["clip_min_tie_weight"],
595
+ self.split_input_params["clip_max_tie_weight"])
596
+
597
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
598
+ weighting = weighting * L_weighting
599
+ return weighting
600
+
601
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
602
+ """
603
+ :param x: img of size (bs, c, h, w)
604
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
605
+ """
606
+ bs, nc, h, w = x.shape
607
+
608
+ # number of crops in image
609
+ Ly = (h - kernel_size[0]) // stride[0] + 1
610
+ Lx = (w - kernel_size[1]) // stride[1] + 1
611
+
612
+ if uf == 1 and df == 1:
613
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
614
+ unfold = torch.nn.Unfold(**fold_params)
615
+
616
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
617
+
618
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
619
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
620
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
621
+
622
+ elif uf > 1 and df == 1:
623
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
624
+ unfold = torch.nn.Unfold(**fold_params)
625
+
626
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
627
+ dilation=1, padding=0,
628
+ stride=(stride[0] * uf, stride[1] * uf))
629
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
630
+
631
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
632
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
633
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
634
+
635
+ elif df > 1 and uf == 1:
636
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
637
+ unfold = torch.nn.Unfold(**fold_params)
638
+
639
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
640
+ dilation=1, padding=0,
641
+ stride=(stride[0] // df, stride[1] // df))
642
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
643
+
644
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
645
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
646
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
647
+
648
+ else:
649
+ raise NotImplementedError
650
+
651
+ return fold, unfold, normalization, weighting
652
+
653
+ @torch.no_grad()
654
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
655
+ cond_key=None, return_original_cond=False, bs=None):
656
+ x = super().get_input(batch, k)
657
+ if bs is not None:
658
+ x = x[:bs]
659
+ x = x.to(self.device)
660
+ encoder_posterior = self.encode_first_stage(x)
661
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
662
+
663
+ if self.model.conditioning_key is not None:
664
+ if cond_key is None:
665
+ cond_key = self.cond_stage_key
666
+ if cond_key != self.first_stage_key:
667
+ if cond_key in ['caption', 'coordinates_bbox']:
668
+ xc = batch[cond_key]
669
+ elif cond_key == 'class_label':
670
+ xc = batch
671
+ else:
672
+ xc = super().get_input(batch, cond_key).to(self.device)
673
+ else:
674
+ xc = x
675
+ if not self.cond_stage_trainable or force_c_encode:
676
+ if isinstance(xc, dict) or isinstance(xc, list):
677
+ # import pudb; pudb.set_trace()
678
+ c = self.get_learned_conditioning(xc)
679
+ else:
680
+ c = self.get_learned_conditioning(xc.to(self.device))
681
+ else:
682
+ c = xc
683
+ if bs is not None:
684
+ c = c[:bs]
685
+
686
+ if self.use_positional_encodings:
687
+ pos_x, pos_y = self.compute_latent_shifts(batch)
688
+ ckey = __conditioning_keys__[self.model.conditioning_key]
689
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
690
+
691
+ else:
692
+ c = None
693
+ xc = None
694
+ if self.use_positional_encodings:
695
+ pos_x, pos_y = self.compute_latent_shifts(batch)
696
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
697
+ out = [z, c]
698
+ if return_first_stage_outputs:
699
+ xrec = self.decode_first_stage(z)
700
+ out.extend([x, xrec])
701
+ if return_original_cond:
702
+ out.append(xc)
703
+ return out
704
+
705
+ @torch.no_grad()
706
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
707
+ if predict_cids:
708
+ if z.dim() == 4:
709
+ z = torch.argmax(z.exp(), dim=1).long()
710
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
711
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
712
+
713
+ z = 1. / self.scale_factor * z
714
+
715
+ if hasattr(self, "split_input_params"):
716
+ if self.split_input_params["patch_distributed_vq"]:
717
+ ks = self.split_input_params["ks"] # eg. (128, 128)
718
+ stride = self.split_input_params["stride"] # eg. (64, 64)
719
+ uf = self.split_input_params["vqf"]
720
+ bs, nc, h, w = z.shape
721
+ if ks[0] > h or ks[1] > w:
722
+ ks = (min(ks[0], h), min(ks[1], w))
723
+ print("reducing Kernel")
724
+
725
+ if stride[0] > h or stride[1] > w:
726
+ stride = (min(stride[0], h), min(stride[1], w))
727
+ print("reducing stride")
728
+
729
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
730
+
731
+ z = unfold(z) # (bn, nc * prod(**ks), L)
732
+ # 1. Reshape to img shape
733
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
734
+
735
+ # 2. apply model loop over last dim
736
+ if isinstance(self.first_stage_model, VQModelInterface):
737
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
738
+ force_not_quantize=predict_cids or force_not_quantize)
739
+ for i in range(z.shape[-1])]
740
+ else:
741
+
742
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
743
+ for i in range(z.shape[-1])]
744
+
745
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
746
+ o = o * weighting
747
+ # Reverse 1. reshape to img shape
748
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
749
+ # stitch crops together
750
+ decoded = fold(o)
751
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
752
+ return decoded
753
+ else:
754
+ if isinstance(self.first_stage_model, VQModelInterface):
755
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
756
+ else:
757
+ return self.first_stage_model.decode(z)
758
+
759
+ else:
760
+ if isinstance(self.first_stage_model, VQModelInterface):
761
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
762
+ else:
763
+ return self.first_stage_model.decode(z)
764
+
765
+ # same as above but without decorator
766
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
767
+ if predict_cids:
768
+ if z.dim() == 4:
769
+ z = torch.argmax(z.exp(), dim=1).long()
770
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
771
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
772
+
773
+ z = 1. / self.scale_factor * z
774
+
775
+ if hasattr(self, "split_input_params"):
776
+ if self.split_input_params["patch_distributed_vq"]:
777
+ ks = self.split_input_params["ks"] # eg. (128, 128)
778
+ stride = self.split_input_params["stride"] # eg. (64, 64)
779
+ uf = self.split_input_params["vqf"]
780
+ bs, nc, h, w = z.shape
781
+ if ks[0] > h or ks[1] > w:
782
+ ks = (min(ks[0], h), min(ks[1], w))
783
+ print("reducing Kernel")
784
+
785
+ if stride[0] > h or stride[1] > w:
786
+ stride = (min(stride[0], h), min(stride[1], w))
787
+ print("reducing stride")
788
+
789
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
790
+
791
+ z = unfold(z) # (bn, nc * prod(**ks), L)
792
+ # 1. Reshape to img shape
793
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
794
+
795
+ # 2. apply model loop over last dim
796
+ if isinstance(self.first_stage_model, VQModelInterface):
797
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
798
+ force_not_quantize=predict_cids or force_not_quantize)
799
+ for i in range(z.shape[-1])]
800
+ else:
801
+
802
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
803
+ for i in range(z.shape[-1])]
804
+
805
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
806
+ o = o * weighting
807
+ # Reverse 1. reshape to img shape
808
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
809
+ # stitch crops together
810
+ decoded = fold(o)
811
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
812
+ return decoded
813
+ else:
814
+ if isinstance(self.first_stage_model, VQModelInterface):
815
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
816
+ else:
817
+ return self.first_stage_model.decode(z)
818
+
819
+ else:
820
+ if isinstance(self.first_stage_model, VQModelInterface):
821
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
822
+ else:
823
+ return self.first_stage_model.decode(z)
824
+
825
+ @torch.no_grad()
826
+ def encode_first_stage(self, x):
827
+ if hasattr(self, "split_input_params"):
828
+ if self.split_input_params["patch_distributed_vq"]:
829
+ ks = self.split_input_params["ks"] # eg. (128, 128)
830
+ stride = self.split_input_params["stride"] # eg. (64, 64)
831
+ df = self.split_input_params["vqf"]
832
+ self.split_input_params['original_image_size'] = x.shape[-2:]
833
+ bs, nc, h, w = x.shape
834
+ if ks[0] > h or ks[1] > w:
835
+ ks = (min(ks[0], h), min(ks[1], w))
836
+ print("reducing Kernel")
837
+
838
+ if stride[0] > h or stride[1] > w:
839
+ stride = (min(stride[0], h), min(stride[1], w))
840
+ print("reducing stride")
841
+
842
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
843
+ z = unfold(x) # (bn, nc * prod(**ks), L)
844
+ # Reshape to img shape
845
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
846
+
847
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
848
+ for i in range(z.shape[-1])]
849
+
850
+ o = torch.stack(output_list, axis=-1)
851
+ o = o * weighting
852
+
853
+ # Reverse reshape to img shape
854
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
855
+ # stitch crops together
856
+ decoded = fold(o)
857
+ decoded = decoded / normalization
858
+ return decoded
859
+
860
+ else:
861
+ return self.first_stage_model.encode(x)
862
+ else:
863
+ return self.first_stage_model.encode(x)
864
+
865
+ def shared_step(self, batch, **kwargs):
866
+ x, c = self.get_input(batch, self.first_stage_key)
867
+ loss = self(x, c)
868
+ return loss
869
+
870
+ def forward(self, x, c, *args, **kwargs):
871
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
872
+ if self.model.conditioning_key is not None:
873
+ assert c is not None
874
+ if self.cond_stage_trainable:
875
+ c = self.get_learned_conditioning(c)
876
+ if self.shorten_cond_schedule: # TODO: drop this option
877
+ tc = self.cond_ids[t].to(self.device)
878
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
879
+ return self.p_losses(x, c, t, *args, **kwargs)
880
+
881
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
882
+ def rescale_bbox(bbox):
883
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
884
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
885
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
886
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
887
+ return x0, y0, w, h
888
+
889
+ return [rescale_bbox(b) for b in bboxes]
890
+
891
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
892
+
893
+ if isinstance(cond, dict):
894
+ # hybrid case, cond is exptected to be a dict
895
+ pass
896
+ else:
897
+ if not isinstance(cond, list):
898
+ cond = [cond]
899
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
900
+ cond = {key: cond}
901
+
902
+ if hasattr(self, "split_input_params"):
903
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
904
+ assert not return_ids
905
+ ks = self.split_input_params["ks"] # eg. (128, 128)
906
+ stride = self.split_input_params["stride"] # eg. (64, 64)
907
+
908
+ h, w = x_noisy.shape[-2:]
909
+
910
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
911
+
912
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
913
+ # Reshape to img shape
914
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
915
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
916
+
917
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
918
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
919
+ c_key = next(iter(cond.keys())) # get key
920
+ c = next(iter(cond.values())) # get value
921
+ assert (len(c) == 1) # todo extend to list with more than one elem
922
+ c = c[0] # get element
923
+
924
+ c = unfold(c)
925
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
926
+
927
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
928
+
929
+ elif self.cond_stage_key == 'coordinates_bbox':
930
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
931
+
932
+ # assuming padding of unfold is always 0 and its dilation is always 1
933
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
934
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
935
+ # as we are operating on latents, we need the factor from the original image size to the
936
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
937
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
938
+ rescale_latent = 2 ** (num_downs)
939
+
940
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
941
+ # need to rescale the tl patch coordinates to be in between (0,1)
942
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
943
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
944
+ for patch_nr in range(z.shape[-1])]
945
+
946
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
947
+ patch_limits = [(x_tl, y_tl,
948
+ rescale_latent * ks[0] / full_img_w,
949
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
950
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
951
+
952
+ # tokenize crop coordinates for the bounding boxes of the respective patches
953
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
954
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
955
+ print(patch_limits_tknzd[0].shape)
956
+ # cut tknzd crop position from conditioning
957
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
958
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
959
+ print(cut_cond.shape)
960
+
961
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
962
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
963
+ print(adapted_cond.shape)
964
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
965
+ print(adapted_cond.shape)
966
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
967
+ print(adapted_cond.shape)
968
+
969
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
970
+
971
+ else:
972
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
973
+
974
+ # apply model by loop over crops
975
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
976
+ assert not isinstance(output_list[0],
977
+ tuple) # todo cant deal with multiple model outputs check this never happens
978
+
979
+ o = torch.stack(output_list, axis=-1)
980
+ o = o * weighting
981
+ # Reverse reshape to img shape
982
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
983
+ # stitch crops together
984
+ x_recon = fold(o) / normalization
985
+
986
+ else:
987
+ x_recon = self.model(x_noisy, t, **cond)
988
+
989
+ if isinstance(x_recon, tuple) and not return_ids:
990
+ return x_recon[0]
991
+ else:
992
+ return x_recon
993
+
994
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
995
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
996
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
997
+
998
+ def _prior_bpd(self, x_start):
999
+ """
1000
+ Get the prior KL term for the variational lower-bound, measured in
1001
+ bits-per-dim.
1002
+ This term can't be optimized, as it only depends on the encoder.
1003
+ :param x_start: the [N x C x ...] tensor of inputs.
1004
+ :return: a batch of [N] KL values (in bits), one per batch element.
1005
+ """
1006
+ batch_size = x_start.shape[0]
1007
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1008
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1009
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1010
+ return mean_flat(kl_prior) / np.log(2.0)
1011
+
1012
+ def p_losses(self, x_start, cond, t, noise=None):
1013
+ noise = default(noise, lambda: torch.randn_like(x_start))
1014
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1015
+ model_output = self.apply_model(x_noisy, t, cond)
1016
+
1017
+ loss_dict = {}
1018
+ prefix = 'train' if self.training else 'val'
1019
+
1020
+ if self.parameterization == "x0":
1021
+ target = x_start
1022
+ elif self.parameterization == "eps":
1023
+ target = noise
1024
+ else:
1025
+ raise NotImplementedError()
1026
+
1027
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1028
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1029
+
1030
+ logvar_t = self.logvar[t].to(self.device)
1031
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1032
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1033
+ if self.learn_logvar:
1034
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1035
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1036
+
1037
+ loss = self.l_simple_weight * loss.mean()
1038
+
1039
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1040
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1041
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1042
+ loss += (self.original_elbo_weight * loss_vlb)
1043
+ loss_dict.update({f'{prefix}/loss': loss})
1044
+
1045
+ return loss, loss_dict
1046
+
1047
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1048
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1049
+ t_in = t
1050
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1051
+
1052
+ if score_corrector is not None:
1053
+ assert self.parameterization == "eps"
1054
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1055
+
1056
+ if return_codebook_ids:
1057
+ model_out, logits = model_out
1058
+
1059
+ if self.parameterization == "eps":
1060
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1061
+ elif self.parameterization == "x0":
1062
+ x_recon = model_out
1063
+ else:
1064
+ raise NotImplementedError()
1065
+
1066
+ if clip_denoised:
1067
+ x_recon.clamp_(-1., 1.)
1068
+ if quantize_denoised:
1069
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1070
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1071
+ if return_codebook_ids:
1072
+ return model_mean, posterior_variance, posterior_log_variance, logits
1073
+ elif return_x0:
1074
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1075
+ else:
1076
+ return model_mean, posterior_variance, posterior_log_variance
1077
+
1078
+ @torch.no_grad()
1079
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1080
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1081
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1082
+ b, *_, device = *x.shape, x.device
1083
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1084
+ return_codebook_ids=return_codebook_ids,
1085
+ quantize_denoised=quantize_denoised,
1086
+ return_x0=return_x0,
1087
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1088
+ if return_codebook_ids:
1089
+ raise DeprecationWarning("Support dropped.")
1090
+ model_mean, _, model_log_variance, logits = outputs
1091
+ elif return_x0:
1092
+ model_mean, _, model_log_variance, x0 = outputs
1093
+ else:
1094
+ model_mean, _, model_log_variance = outputs
1095
+
1096
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1097
+ if noise_dropout > 0.:
1098
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1099
+ # no noise when t == 0
1100
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1101
+
1102
+ if return_codebook_ids:
1103
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1104
+ if return_x0:
1105
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1106
+ else:
1107
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1108
+
1109
+ @torch.no_grad()
1110
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1111
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1112
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1113
+ log_every_t=None):
1114
+ if not log_every_t:
1115
+ log_every_t = self.log_every_t
1116
+ timesteps = self.num_timesteps
1117
+ if batch_size is not None:
1118
+ b = batch_size if batch_size is not None else shape[0]
1119
+ shape = [batch_size] + list(shape)
1120
+ else:
1121
+ b = batch_size = shape[0]
1122
+ if x_T is None:
1123
+ img = torch.randn(shape, device=self.device)
1124
+ else:
1125
+ img = x_T
1126
+ intermediates = []
1127
+ if cond is not None:
1128
+ if isinstance(cond, dict):
1129
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1130
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1131
+ else:
1132
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1133
+
1134
+ if start_T is not None:
1135
+ timesteps = min(timesteps, start_T)
1136
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1137
+ total=timesteps) if verbose else reversed(
1138
+ range(0, timesteps))
1139
+ if type(temperature) == float:
1140
+ temperature = [temperature] * timesteps
1141
+
1142
+ for i in iterator:
1143
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1144
+ if self.shorten_cond_schedule:
1145
+ assert self.model.conditioning_key != 'hybrid'
1146
+ tc = self.cond_ids[ts].to(cond.device)
1147
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1148
+
1149
+ img, x0_partial = self.p_sample(img, cond, ts,
1150
+ clip_denoised=self.clip_denoised,
1151
+ quantize_denoised=quantize_denoised, return_x0=True,
1152
+ temperature=temperature[i], noise_dropout=noise_dropout,
1153
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1154
+ if mask is not None:
1155
+ assert x0 is not None
1156
+ img_orig = self.q_sample(x0, ts)
1157
+ img = img_orig * mask + (1. - mask) * img
1158
+
1159
+ if i % log_every_t == 0 or i == timesteps - 1:
1160
+ intermediates.append(x0_partial)
1161
+ if callback: callback(i)
1162
+ if img_callback: img_callback(img, i)
1163
+ return img, intermediates
1164
+
1165
+ @torch.no_grad()
1166
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1167
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1168
+ mask=None, x0=None, img_callback=None, start_T=None,
1169
+ log_every_t=None):
1170
+
1171
+ if not log_every_t:
1172
+ log_every_t = self.log_every_t
1173
+ device = self.betas.device
1174
+ b = shape[0]
1175
+ if x_T is None:
1176
+ img = torch.randn(shape, device=device)
1177
+ else:
1178
+ img = x_T
1179
+
1180
+ intermediates = [img]
1181
+ if timesteps is None:
1182
+ timesteps = self.num_timesteps
1183
+
1184
+ if start_T is not None:
1185
+ timesteps = min(timesteps, start_T)
1186
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1187
+ range(0, timesteps))
1188
+
1189
+ if mask is not None:
1190
+ assert x0 is not None
1191
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1192
+
1193
+ for i in iterator:
1194
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1195
+ if self.shorten_cond_schedule:
1196
+ assert self.model.conditioning_key != 'hybrid'
1197
+ tc = self.cond_ids[ts].to(cond.device)
1198
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1199
+
1200
+ img = self.p_sample(img, cond, ts,
1201
+ clip_denoised=self.clip_denoised,
1202
+ quantize_denoised=quantize_denoised)
1203
+ if mask is not None:
1204
+ img_orig = self.q_sample(x0, ts)
1205
+ img = img_orig * mask + (1. - mask) * img
1206
+
1207
+ if i % log_every_t == 0 or i == timesteps - 1:
1208
+ intermediates.append(img)
1209
+ if callback: callback(i)
1210
+ if img_callback: img_callback(img, i)
1211
+
1212
+ if return_intermediates:
1213
+ return img, intermediates
1214
+ return img
1215
+
1216
+ @torch.no_grad()
1217
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1218
+ verbose=True, timesteps=None, quantize_denoised=False,
1219
+ mask=None, x0=None, shape=None,**kwargs):
1220
+ if shape is None:
1221
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1222
+ if cond is not None:
1223
+ if isinstance(cond, dict):
1224
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1225
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1226
+ else:
1227
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1228
+ return self.p_sample_loop(cond,
1229
+ shape,
1230
+ return_intermediates=return_intermediates, x_T=x_T,
1231
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1232
+ mask=mask, x0=x0)
1233
+
1234
+ @torch.no_grad()
1235
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
1236
+
1237
+ if ddim:
1238
+ ddim_sampler = DDIMSampler(self)
1239
+ shape = (self.channels, self.image_size, self.image_size)
1240
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
1241
+ shape,cond,verbose=False,**kwargs)
1242
+
1243
+ else:
1244
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1245
+ return_intermediates=True,**kwargs)
1246
+
1247
+ return samples, intermediates
1248
+
1249
+
1250
+ @torch.no_grad()
1251
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1252
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1253
+ plot_diffusion_rows=True, **kwargs):
1254
+
1255
+ use_ddim = ddim_steps is not None
1256
+
1257
+ log = dict()
1258
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1259
+ return_first_stage_outputs=True,
1260
+ force_c_encode=True,
1261
+ return_original_cond=True,
1262
+ bs=N)
1263
+ N = min(x.shape[0], N)
1264
+ n_row = min(x.shape[0], n_row)
1265
+ log["inputs"] = x
1266
+ log["reconstruction"] = xrec
1267
+ if self.model.conditioning_key is not None:
1268
+ if hasattr(self.cond_stage_model, "decode"):
1269
+ xc = self.cond_stage_model.decode(c)
1270
+ log["conditioning"] = xc
1271
+ elif self.cond_stage_key in ["caption"]:
1272
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
1273
+ log["conditioning"] = xc
1274
+ elif self.cond_stage_key == 'class_label':
1275
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
1276
+ log['conditioning'] = xc
1277
+ elif isimage(xc):
1278
+ log["conditioning"] = xc
1279
+ if ismap(xc):
1280
+ log["original_conditioning"] = self.to_rgb(xc)
1281
+
1282
+ if plot_diffusion_rows:
1283
+ # get diffusion row
1284
+ diffusion_row = list()
1285
+ z_start = z[:n_row]
1286
+ for t in range(self.num_timesteps):
1287
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1288
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1289
+ t = t.to(self.device).long()
1290
+ noise = torch.randn_like(z_start)
1291
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1292
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1293
+
1294
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1295
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1296
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1297
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1298
+ log["diffusion_row"] = diffusion_grid
1299
+
1300
+ if sample:
1301
+ # get denoise row
1302
+ with self.ema_scope("Plotting"):
1303
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1304
+ ddim_steps=ddim_steps,eta=ddim_eta)
1305
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1306
+ x_samples = self.decode_first_stage(samples)
1307
+ log["samples"] = x_samples
1308
+ if plot_denoise_rows:
1309
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1310
+ log["denoise_row"] = denoise_grid
1311
+
1312
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1313
+ self.first_stage_model, IdentityFirstStage):
1314
+ # also display when quantizing x0 while sampling
1315
+ with self.ema_scope("Plotting Quantized Denoised"):
1316
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1317
+ ddim_steps=ddim_steps,eta=ddim_eta,
1318
+ quantize_denoised=True)
1319
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1320
+ # quantize_denoised=True)
1321
+ x_samples = self.decode_first_stage(samples.to(self.device))
1322
+ log["samples_x0_quantized"] = x_samples
1323
+
1324
+ if inpaint:
1325
+ # make a simple center square
1326
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1327
+ mask = torch.ones(N, h, w).to(self.device)
1328
+ # zeros will be filled in
1329
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1330
+ mask = mask[:, None, ...]
1331
+ with self.ema_scope("Plotting Inpaint"):
1332
+
1333
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1334
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1335
+ x_samples = self.decode_first_stage(samples.to(self.device))
1336
+ log["samples_inpainting"] = x_samples
1337
+ log["mask"] = mask
1338
+
1339
+ # outpaint
1340
+ with self.ema_scope("Plotting Outpaint"):
1341
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1342
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1343
+ x_samples = self.decode_first_stage(samples.to(self.device))
1344
+ log["samples_outpainting"] = x_samples
1345
+
1346
+ if plot_progressive_rows:
1347
+ with self.ema_scope("Plotting Progressives"):
1348
+ img, progressives = self.progressive_denoising(c,
1349
+ shape=(self.channels, self.image_size, self.image_size),
1350
+ batch_size=N)
1351
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1352
+ log["progressive_row"] = prog_row
1353
+
1354
+ if return_keys:
1355
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1356
+ return log
1357
+ else:
1358
+ return {key: log[key] for key in return_keys}
1359
+ return log
1360
+
1361
+ def configure_optimizers(self):
1362
+ lr = self.learning_rate
1363
+ params = list(self.model.parameters())
1364
+ if self.cond_stage_trainable:
1365
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1366
+ params = params + list(self.cond_stage_model.parameters())
1367
+ if self.learn_logvar:
1368
+ print('Diffusion model optimizing logvar')
1369
+ params.append(self.logvar)
1370
+ opt = torch.optim.AdamW(params, lr=lr)
1371
+ if self.use_scheduler:
1372
+ assert 'target' in self.scheduler_config
1373
+ scheduler = instantiate_from_config(self.scheduler_config)
1374
+
1375
+ print("Setting up LambdaLR scheduler...")
1376
+ scheduler = [
1377
+ {
1378
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1379
+ 'interval': 'step',
1380
+ 'frequency': 1
1381
+ }]
1382
+ return [opt], scheduler
1383
+ return opt
1384
+
1385
+ @torch.no_grad()
1386
+ def to_rgb(self, x):
1387
+ x = x.float()
1388
+ if not hasattr(self, "colorize"):
1389
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1390
+ x = nn.functional.conv2d(x, weight=self.colorize)
1391
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1392
+ return x
1393
+
1394
+
1395
+ class DiffusionWrapper(pl.LightningModule):
1396
+ def __init__(self, diff_model_config, conditioning_key):
1397
+ super().__init__()
1398
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1399
+ self.conditioning_key = conditioning_key
1400
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
1401
+
1402
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
1403
+ if self.conditioning_key is None:
1404
+ out = self.diffusion_model(x, t)
1405
+ elif self.conditioning_key == 'concat':
1406
+ xc = torch.cat([x] + c_concat, dim=1)
1407
+ out = self.diffusion_model(xc, t)
1408
+ elif self.conditioning_key == 'crossattn':
1409
+ cc = torch.cat(c_crossattn, 1)
1410
+ out = self.diffusion_model(x, t, context=cc)
1411
+ elif self.conditioning_key == 'hybrid':
1412
+ xc = torch.cat([x] + c_concat, dim=1)
1413
+ cc = torch.cat(c_crossattn, 1)
1414
+ out = self.diffusion_model(xc, t, context=cc)
1415
+ elif self.conditioning_key == 'adm':
1416
+ cc = c_crossattn[0]
1417
+ out = self.diffusion_model(x, t, y=cc)
1418
+ else:
1419
+ raise NotImplementedError()
1420
+
1421
+ return out
1422
+
1423
+
1424
+ class Layout2ImgDiffusion(LatentDiffusion):
1425
+ # TODO: move all layout-specific hacks to this class
1426
+ def __init__(self, cond_stage_key, *args, **kwargs):
1427
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1428
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1429
+
1430
+ def log_images(self, batch, N=8, *args, **kwargs):
1431
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1432
+
1433
+ key = 'train' if self.training else 'validation'
1434
+ dset = self.trainer.datamodule.datasets[key]
1435
+ mapper = dset.conditional_builders[self.cond_stage_key]
1436
+
1437
+ bbox_imgs = []
1438
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1439
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1440
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1441
+ bbox_imgs.append(bboximg)
1442
+
1443
+ cond_img = torch.stack(bbox_imgs, dim=0)
1444
+ logs['bbox_image'] = cond_img
1445
+ return logs
latent-diffusion/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+
10
+
11
+ class PLMSSampler(object):
12
+ def __init__(self, model, schedule="linear", **kwargs):
13
+ super().__init__()
14
+ self.model = model
15
+ self.ddpm_num_timesteps = model.num_timesteps
16
+ self.schedule = schedule
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ if ddim_eta != 0:
26
+ raise ValueError('ddim_eta must be 0 for PLMS')
27
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
28
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
29
+ alphas_cumprod = self.model.alphas_cumprod
30
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
31
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
32
+
33
+ self.register_buffer('betas', to_torch(self.model.betas))
34
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
36
+
37
+ # calculations for diffusion q(x_t | x_{t-1}) and others
38
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
40
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
43
+
44
+ # ddim sampling parameters
45
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
46
+ ddim_timesteps=self.ddim_timesteps,
47
+ eta=ddim_eta,verbose=verbose)
48
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
49
+ self.register_buffer('ddim_alphas', ddim_alphas)
50
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
51
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
52
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
53
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
54
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
55
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
56
+
57
+ @torch.no_grad()
58
+ def sample(self,
59
+ S,
60
+ batch_size,
61
+ shape,
62
+ conditioning=None,
63
+ callback=None,
64
+ normals_sequence=None,
65
+ img_callback=None,
66
+ quantize_x0=False,
67
+ eta=0.,
68
+ mask=None,
69
+ x0=None,
70
+ temperature=1.,
71
+ noise_dropout=0.,
72
+ score_corrector=None,
73
+ corrector_kwargs=None,
74
+ verbose=True,
75
+ x_T=None,
76
+ log_every_t=100,
77
+ unconditional_guidance_scale=1.,
78
+ unconditional_conditioning=None,
79
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
80
+ **kwargs
81
+ ):
82
+ if conditioning is not None:
83
+ if isinstance(conditioning, dict):
84
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+ else:
88
+ if conditioning.shape[0] != batch_size:
89
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
90
+
91
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
92
+ # sampling
93
+ C, H, W = shape
94
+ size = (batch_size, C, H, W)
95
+ print(f'Data shape for PLMS sampling is {size}')
96
+
97
+ samples, intermediates = self.plms_sampling(conditioning, size,
98
+ callback=callback,
99
+ img_callback=img_callback,
100
+ quantize_denoised=quantize_x0,
101
+ mask=mask, x0=x0,
102
+ ddim_use_original_steps=False,
103
+ noise_dropout=noise_dropout,
104
+ temperature=temperature,
105
+ score_corrector=score_corrector,
106
+ corrector_kwargs=corrector_kwargs,
107
+ x_T=x_T,
108
+ log_every_t=log_every_t,
109
+ unconditional_guidance_scale=unconditional_guidance_scale,
110
+ unconditional_conditioning=unconditional_conditioning,
111
+ )
112
+ return samples, intermediates
113
+
114
+ @torch.no_grad()
115
+ def plms_sampling(self, cond, shape,
116
+ x_T=None, ddim_use_original_steps=False,
117
+ callback=None, timesteps=None, quantize_denoised=False,
118
+ mask=None, x0=None, img_callback=None, log_every_t=100,
119
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
120
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
121
+ device = self.model.betas.device
122
+ b = shape[0]
123
+ if x_T is None:
124
+ img = torch.randn(shape, device=device)
125
+ else:
126
+ img = x_T
127
+
128
+ if timesteps is None:
129
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
130
+ elif timesteps is not None and not ddim_use_original_steps:
131
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
132
+ timesteps = self.ddim_timesteps[:subset_end]
133
+
134
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
135
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
136
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
137
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
138
+
139
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
140
+ old_eps = []
141
+
142
+ for i, step in enumerate(iterator):
143
+ index = total_steps - i - 1
144
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
145
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
146
+
147
+ if mask is not None:
148
+ assert x0 is not None
149
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
150
+ img = img_orig * mask + (1. - mask) * img
151
+
152
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
153
+ quantize_denoised=quantize_denoised, temperature=temperature,
154
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
155
+ corrector_kwargs=corrector_kwargs,
156
+ unconditional_guidance_scale=unconditional_guidance_scale,
157
+ unconditional_conditioning=unconditional_conditioning,
158
+ old_eps=old_eps, t_next=ts_next)
159
+ img, pred_x0, e_t = outs
160
+ old_eps.append(e_t)
161
+ if len(old_eps) >= 4:
162
+ old_eps.pop(0)
163
+ if callback: callback(i)
164
+ if img_callback: img_callback(pred_x0, i)
165
+
166
+ if index % log_every_t == 0 or index == total_steps - 1:
167
+ intermediates['x_inter'].append(img)
168
+ intermediates['pred_x0'].append(pred_x0)
169
+
170
+ return img, intermediates
171
+
172
+ @torch.no_grad()
173
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
174
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
175
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
176
+ b, *_, device = *x.shape, x.device
177
+
178
+ def get_model_output(x, t):
179
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
180
+ e_t = self.model.apply_model(x, t, c)
181
+ else:
182
+ x_in = torch.cat([x] * 2)
183
+ t_in = torch.cat([t] * 2)
184
+ c_in = torch.cat([unconditional_conditioning, c])
185
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
186
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
187
+
188
+ if score_corrector is not None:
189
+ assert self.model.parameterization == "eps"
190
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
191
+
192
+ return e_t
193
+
194
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
195
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
196
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
197
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
198
+
199
+ def get_x_prev_and_pred_x0(e_t, index):
200
+ # select parameters corresponding to the currently considered timestep
201
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
202
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
203
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
204
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
205
+
206
+ # current prediction for x_0
207
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
208
+ if quantize_denoised:
209
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
210
+ # direction pointing to x_t
211
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
212
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
213
+ if noise_dropout > 0.:
214
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
215
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
216
+ return x_prev, pred_x0
217
+
218
+ e_t = get_model_output(x, t)
219
+ if len(old_eps) == 0:
220
+ # Pseudo Improved Euler (2nd order)
221
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
222
+ e_t_next = get_model_output(x_prev, t_next)
223
+ e_t_prime = (e_t + e_t_next) / 2
224
+ elif len(old_eps) == 1:
225
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
226
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
227
+ elif len(old_eps) == 2:
228
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
229
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
230
+ elif len(old_eps) >= 3:
231
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
232
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
233
+
234
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
235
+
236
+ return x_prev, pred_x0, e_t
latent-diffusion/ldm/modules/__pycache__/attention.cpython-39.pyc ADDED
Binary file (8.8 kB). View file
 
latent-diffusion/ldm/modules/__pycache__/ema.cpython-39.pyc ADDED
Binary file (3.01 kB). View file
 
latent-diffusion/ldm/modules/__pycache__/x_transformer.cpython-39.pyc ADDED
Binary file (18.3 kB). View file
 
latent-diffusion/ldm/modules/attention.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+
8
+ from ldm.modules.diffusionmodules.util import checkpoint
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def uniq(arr):
16
+ return{el: True for el in arr}.keys()
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def max_neg_value(t):
26
+ return -torch.finfo(t.dtype).max
27
+
28
+
29
+ def init_(tensor):
30
+ dim = tensor.shape[-1]
31
+ std = 1 / math.sqrt(dim)
32
+ tensor.uniform_(-std, std)
33
+ return tensor
34
+
35
+
36
+ # feedforward
37
+ class GEGLU(nn.Module):
38
+ def __init__(self, dim_in, dim_out):
39
+ super().__init__()
40
+ self.proj = nn.Linear(dim_in, dim_out * 2)
41
+
42
+ def forward(self, x):
43
+ x, gate = self.proj(x).chunk(2, dim=-1)
44
+ return x * F.gelu(gate)
45
+
46
+
47
+ class FeedForward(nn.Module):
48
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
49
+ super().__init__()
50
+ inner_dim = int(dim * mult)
51
+ dim_out = default(dim_out, dim)
52
+ project_in = nn.Sequential(
53
+ nn.Linear(dim, inner_dim),
54
+ nn.GELU()
55
+ ) if not glu else GEGLU(dim, inner_dim)
56
+
57
+ self.net = nn.Sequential(
58
+ project_in,
59
+ nn.Dropout(dropout),
60
+ nn.Linear(inner_dim, dim_out)
61
+ )
62
+
63
+ def forward(self, x):
64
+ return self.net(x)
65
+
66
+
67
+ def zero_module(module):
68
+ """
69
+ Zero out the parameters of a module and return it.
70
+ """
71
+ for p in module.parameters():
72
+ p.detach().zero_()
73
+ return module
74
+
75
+
76
+ def Normalize(in_channels):
77
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
+
79
+
80
+ class LinearAttention(nn.Module):
81
+ def __init__(self, dim, heads=4, dim_head=32):
82
+ super().__init__()
83
+ self.heads = heads
84
+ hidden_dim = dim_head * heads
85
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
86
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
87
+
88
+ def forward(self, x):
89
+ b, c, h, w = x.shape
90
+ qkv = self.to_qkv(x)
91
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
92
+ k = k.softmax(dim=-1)
93
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
94
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
95
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
96
+ return self.to_out(out)
97
+
98
+
99
+ class SpatialSelfAttention(nn.Module):
100
+ def __init__(self, in_channels):
101
+ super().__init__()
102
+ self.in_channels = in_channels
103
+
104
+ self.norm = Normalize(in_channels)
105
+ self.q = torch.nn.Conv2d(in_channels,
106
+ in_channels,
107
+ kernel_size=1,
108
+ stride=1,
109
+ padding=0)
110
+ self.k = torch.nn.Conv2d(in_channels,
111
+ in_channels,
112
+ kernel_size=1,
113
+ stride=1,
114
+ padding=0)
115
+ self.v = torch.nn.Conv2d(in_channels,
116
+ in_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+ self.proj_out = torch.nn.Conv2d(in_channels,
121
+ in_channels,
122
+ kernel_size=1,
123
+ stride=1,
124
+ padding=0)
125
+
126
+ def forward(self, x):
127
+ h_ = x
128
+ h_ = self.norm(h_)
129
+ q = self.q(h_)
130
+ k = self.k(h_)
131
+ v = self.v(h_)
132
+
133
+ # compute attention
134
+ b,c,h,w = q.shape
135
+ q = rearrange(q, 'b c h w -> b (h w) c')
136
+ k = rearrange(k, 'b c h w -> b c (h w)')
137
+ w_ = torch.einsum('bij,bjk->bik', q, k)
138
+
139
+ w_ = w_ * (int(c)**(-0.5))
140
+ w_ = torch.nn.functional.softmax(w_, dim=2)
141
+
142
+ # attend to values
143
+ v = rearrange(v, 'b c h w -> b c (h w)')
144
+ w_ = rearrange(w_, 'b i j -> b j i')
145
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
146
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
147
+ h_ = self.proj_out(h_)
148
+
149
+ return x+h_
150
+
151
+
152
+ class CrossAttention(nn.Module):
153
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
154
+ super().__init__()
155
+ inner_dim = dim_head * heads
156
+ context_dim = default(context_dim, query_dim)
157
+
158
+ self.scale = dim_head ** -0.5
159
+ self.heads = heads
160
+
161
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
162
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
163
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
164
+
165
+ self.to_out = nn.Sequential(
166
+ nn.Linear(inner_dim, query_dim),
167
+ nn.Dropout(dropout)
168
+ )
169
+
170
+ def forward(self, x, context=None, mask=None):
171
+ h = self.heads
172
+
173
+ q = self.to_q(x)
174
+ context = default(context, x)
175
+ k = self.to_k(context)
176
+ v = self.to_v(context)
177
+
178
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
179
+
180
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
181
+
182
+ if exists(mask):
183
+ mask = rearrange(mask, 'b ... -> b (...)')
184
+ max_neg_value = -torch.finfo(sim.dtype).max
185
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
186
+ sim.masked_fill_(~mask, max_neg_value)
187
+
188
+ # attention, what we cannot get enough of
189
+ attn = sim.softmax(dim=-1)
190
+
191
+ out = einsum('b i j, b j d -> b i d', attn, v)
192
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
193
+ return self.to_out(out)
194
+
195
+
196
+ class BasicTransformerBlock(nn.Module):
197
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
198
+ super().__init__()
199
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
200
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
201
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
202
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
203
+ self.norm1 = nn.LayerNorm(dim)
204
+ self.norm2 = nn.LayerNorm(dim)
205
+ self.norm3 = nn.LayerNorm(dim)
206
+ self.checkpoint = checkpoint
207
+
208
+ def forward(self, x, context=None):
209
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
210
+
211
+ def _forward(self, x, context=None):
212
+ x = self.attn1(self.norm1(x)) + x
213
+ x = self.attn2(self.norm2(x), context=context) + x
214
+ x = self.ff(self.norm3(x)) + x
215
+ return x
216
+
217
+
218
+ class SpatialTransformer(nn.Module):
219
+ """
220
+ Transformer block for image-like data.
221
+ First, project the input (aka embedding)
222
+ and reshape to b, t, d.
223
+ Then apply standard transformer action.
224
+ Finally, reshape to image
225
+ """
226
+ def __init__(self, in_channels, n_heads, d_head,
227
+ depth=1, dropout=0., context_dim=None):
228
+ super().__init__()
229
+ self.in_channels = in_channels
230
+ inner_dim = n_heads * d_head
231
+ self.norm = Normalize(in_channels)
232
+
233
+ self.proj_in = nn.Conv2d(in_channels,
234
+ inner_dim,
235
+ kernel_size=1,
236
+ stride=1,
237
+ padding=0)
238
+
239
+ self.transformer_blocks = nn.ModuleList(
240
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
241
+ for d in range(depth)]
242
+ )
243
+
244
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
245
+ in_channels,
246
+ kernel_size=1,
247
+ stride=1,
248
+ padding=0))
249
+
250
+ def forward(self, x, context=None):
251
+ # note: if no context is given, cross-attention defaults to self-attention
252
+ b, c, h, w = x.shape
253
+ x_in = x
254
+ x = self.norm(x)
255
+ x = self.proj_in(x)
256
+ x = rearrange(x, 'b c h w -> b (h w) c')
257
+ for block in self.transformer_blocks:
258
+ x = block(x, context=context)
259
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
260
+ x = self.proj_out(x)
261
+ return x + x_in
latent-diffusion/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
latent-diffusion/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (201 Bytes). View file
 
latent-diffusion/ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc ADDED
Binary file (20.6 kB). View file
 
latent-diffusion/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc ADDED
Binary file (22.7 kB). View file
 
latent-diffusion/ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc ADDED
Binary file (9.55 kB). View file
 
latent-diffusion/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
latent-diffusion/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,961 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+
22
+
23
+ # dummy replace
24
+ def convert_module_to_f16(x):
25
+ pass
26
+
27
+ def convert_module_to_f32(x):
28
+ pass
29
+
30
+
31
+ ## go
32
+ class AttentionPool2d(nn.Module):
33
+ """
34
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
35
+ """
36
+
37
+ def __init__(
38
+ self,
39
+ spacial_dim: int,
40
+ embed_dim: int,
41
+ num_heads_channels: int,
42
+ output_dim: int = None,
43
+ ):
44
+ super().__init__()
45
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
46
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
47
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
48
+ self.num_heads = embed_dim // num_heads_channels
49
+ self.attention = QKVAttention(self.num_heads)
50
+
51
+ def forward(self, x):
52
+ b, c, *_spatial = x.shape
53
+ x = x.reshape(b, c, -1) # NC(HW)
54
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
55
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
56
+ x = self.qkv_proj(x)
57
+ x = self.attention(x)
58
+ x = self.c_proj(x)
59
+ return x[:, :, 0]
60
+
61
+
62
+ class TimestepBlock(nn.Module):
63
+ """
64
+ Any module where forward() takes timestep embeddings as a second argument.
65
+ """
66
+
67
+ @abstractmethod
68
+ def forward(self, x, emb):
69
+ """
70
+ Apply the module to `x` given `emb` timestep embeddings.
71
+ """
72
+
73
+
74
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
75
+ """
76
+ A sequential module that passes timestep embeddings to the children that
77
+ support it as an extra input.
78
+ """
79
+
80
+ def forward(self, x, emb, context=None):
81
+ for layer in self:
82
+ if isinstance(layer, TimestepBlock):
83
+ x = layer(x, emb)
84
+ elif isinstance(layer, SpatialTransformer):
85
+ x = layer(x, context)
86
+ else:
87
+ x = layer(x)
88
+ return x
89
+
90
+
91
+ class Upsample(nn.Module):
92
+ """
93
+ An upsampling layer with an optional convolution.
94
+ :param channels: channels in the inputs and outputs.
95
+ :param use_conv: a bool determining if a convolution is applied.
96
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
97
+ upsampling occurs in the inner-two dimensions.
98
+ """
99
+
100
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
101
+ super().__init__()
102
+ self.channels = channels
103
+ self.out_channels = out_channels or channels
104
+ self.use_conv = use_conv
105
+ self.dims = dims
106
+ if use_conv:
107
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
108
+
109
+ def forward(self, x):
110
+ assert x.shape[1] == self.channels
111
+ if self.dims == 3:
112
+ x = F.interpolate(
113
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
114
+ )
115
+ else:
116
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
117
+ if self.use_conv:
118
+ x = self.conv(x)
119
+ return x
120
+
121
+ class TransposedUpsample(nn.Module):
122
+ 'Learned 2x upsampling without padding'
123
+ def __init__(self, channels, out_channels=None, ks=5):
124
+ super().__init__()
125
+ self.channels = channels
126
+ self.out_channels = out_channels or channels
127
+
128
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
129
+
130
+ def forward(self,x):
131
+ return self.up(x)
132
+
133
+
134
+ class Downsample(nn.Module):
135
+ """
136
+ A downsampling layer with an optional convolution.
137
+ :param channels: channels in the inputs and outputs.
138
+ :param use_conv: a bool determining if a convolution is applied.
139
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
140
+ downsampling occurs in the inner-two dimensions.
141
+ """
142
+
143
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
144
+ super().__init__()
145
+ self.channels = channels
146
+ self.out_channels = out_channels or channels
147
+ self.use_conv = use_conv
148
+ self.dims = dims
149
+ stride = 2 if dims != 3 else (1, 2, 2)
150
+ if use_conv:
151
+ self.op = conv_nd(
152
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
153
+ )
154
+ else:
155
+ assert self.channels == self.out_channels
156
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
157
+
158
+ def forward(self, x):
159
+ assert x.shape[1] == self.channels
160
+ return self.op(x)
161
+
162
+
163
+ class ResBlock(TimestepBlock):
164
+ """
165
+ A residual block that can optionally change the number of channels.
166
+ :param channels: the number of input channels.
167
+ :param emb_channels: the number of timestep embedding channels.
168
+ :param dropout: the rate of dropout.
169
+ :param out_channels: if specified, the number of out channels.
170
+ :param use_conv: if True and out_channels is specified, use a spatial
171
+ convolution instead of a smaller 1x1 convolution to change the
172
+ channels in the skip connection.
173
+ :param dims: determines if the signal is 1D, 2D, or 3D.
174
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
175
+ :param up: if True, use this block for upsampling.
176
+ :param down: if True, use this block for downsampling.
177
+ """
178
+
179
+ def __init__(
180
+ self,
181
+ channels,
182
+ emb_channels,
183
+ dropout,
184
+ out_channels=None,
185
+ use_conv=False,
186
+ use_scale_shift_norm=False,
187
+ dims=2,
188
+ use_checkpoint=False,
189
+ up=False,
190
+ down=False,
191
+ ):
192
+ super().__init__()
193
+ self.channels = channels
194
+ self.emb_channels = emb_channels
195
+ self.dropout = dropout
196
+ self.out_channels = out_channels or channels
197
+ self.use_conv = use_conv
198
+ self.use_checkpoint = use_checkpoint
199
+ self.use_scale_shift_norm = use_scale_shift_norm
200
+
201
+ self.in_layers = nn.Sequential(
202
+ normalization(channels),
203
+ nn.SiLU(),
204
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
205
+ )
206
+
207
+ self.updown = up or down
208
+
209
+ if up:
210
+ self.h_upd = Upsample(channels, False, dims)
211
+ self.x_upd = Upsample(channels, False, dims)
212
+ elif down:
213
+ self.h_upd = Downsample(channels, False, dims)
214
+ self.x_upd = Downsample(channels, False, dims)
215
+ else:
216
+ self.h_upd = self.x_upd = nn.Identity()
217
+
218
+ self.emb_layers = nn.Sequential(
219
+ nn.SiLU(),
220
+ linear(
221
+ emb_channels,
222
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
223
+ ),
224
+ )
225
+ self.out_layers = nn.Sequential(
226
+ normalization(self.out_channels),
227
+ nn.SiLU(),
228
+ nn.Dropout(p=dropout),
229
+ zero_module(
230
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
231
+ ),
232
+ )
233
+
234
+ if self.out_channels == channels:
235
+ self.skip_connection = nn.Identity()
236
+ elif use_conv:
237
+ self.skip_connection = conv_nd(
238
+ dims, channels, self.out_channels, 3, padding=1
239
+ )
240
+ else:
241
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
242
+
243
+ def forward(self, x, emb):
244
+ """
245
+ Apply the block to a Tensor, conditioned on a timestep embedding.
246
+ :param x: an [N x C x ...] Tensor of features.
247
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
248
+ :return: an [N x C x ...] Tensor of outputs.
249
+ """
250
+ return checkpoint(
251
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
252
+ )
253
+
254
+
255
+ def _forward(self, x, emb):
256
+ if self.updown:
257
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
258
+ h = in_rest(x)
259
+ h = self.h_upd(h)
260
+ x = self.x_upd(x)
261
+ h = in_conv(h)
262
+ else:
263
+ h = self.in_layers(x)
264
+ emb_out = self.emb_layers(emb).type(h.dtype)
265
+ while len(emb_out.shape) < len(h.shape):
266
+ emb_out = emb_out[..., None]
267
+ if self.use_scale_shift_norm:
268
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
269
+ scale, shift = th.chunk(emb_out, 2, dim=1)
270
+ h = out_norm(h) * (1 + scale) + shift
271
+ h = out_rest(h)
272
+ else:
273
+ h = h + emb_out
274
+ h = self.out_layers(h)
275
+ return self.skip_connection(x) + h
276
+
277
+
278
+ class AttentionBlock(nn.Module):
279
+ """
280
+ An attention block that allows spatial positions to attend to each other.
281
+ Originally ported from here, but adapted to the N-d case.
282
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
283
+ """
284
+
285
+ def __init__(
286
+ self,
287
+ channels,
288
+ num_heads=1,
289
+ num_head_channels=-1,
290
+ use_checkpoint=False,
291
+ use_new_attention_order=False,
292
+ ):
293
+ super().__init__()
294
+ self.channels = channels
295
+ if num_head_channels == -1:
296
+ self.num_heads = num_heads
297
+ else:
298
+ assert (
299
+ channels % num_head_channels == 0
300
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
301
+ self.num_heads = channels // num_head_channels
302
+ self.use_checkpoint = use_checkpoint
303
+ self.norm = normalization(channels)
304
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
305
+ if use_new_attention_order:
306
+ # split qkv before split heads
307
+ self.attention = QKVAttention(self.num_heads)
308
+ else:
309
+ # split heads before split qkv
310
+ self.attention = QKVAttentionLegacy(self.num_heads)
311
+
312
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
313
+
314
+ def forward(self, x):
315
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
316
+ #return pt_checkpoint(self._forward, x) # pytorch
317
+
318
+ def _forward(self, x):
319
+ b, c, *spatial = x.shape
320
+ x = x.reshape(b, c, -1)
321
+ qkv = self.qkv(self.norm(x))
322
+ h = self.attention(qkv)
323
+ h = self.proj_out(h)
324
+ return (x + h).reshape(b, c, *spatial)
325
+
326
+
327
+ def count_flops_attn(model, _x, y):
328
+ """
329
+ A counter for the `thop` package to count the operations in an
330
+ attention operation.
331
+ Meant to be used like:
332
+ macs, params = thop.profile(
333
+ model,
334
+ inputs=(inputs, timestamps),
335
+ custom_ops={QKVAttention: QKVAttention.count_flops},
336
+ )
337
+ """
338
+ b, c, *spatial = y[0].shape
339
+ num_spatial = int(np.prod(spatial))
340
+ # We perform two matmuls with the same number of ops.
341
+ # The first computes the weight matrix, the second computes
342
+ # the combination of the value vectors.
343
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
344
+ model.total_ops += th.DoubleTensor([matmul_ops])
345
+
346
+
347
+ class QKVAttentionLegacy(nn.Module):
348
+ """
349
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
350
+ """
351
+
352
+ def __init__(self, n_heads):
353
+ super().__init__()
354
+ self.n_heads = n_heads
355
+
356
+ def forward(self, qkv):
357
+ """
358
+ Apply QKV attention.
359
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
360
+ :return: an [N x (H * C) x T] tensor after attention.
361
+ """
362
+ bs, width, length = qkv.shape
363
+ assert width % (3 * self.n_heads) == 0
364
+ ch = width // (3 * self.n_heads)
365
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
366
+ scale = 1 / math.sqrt(math.sqrt(ch))
367
+ weight = th.einsum(
368
+ "bct,bcs->bts", q * scale, k * scale
369
+ ) # More stable with f16 than dividing afterwards
370
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
371
+ a = th.einsum("bts,bcs->bct", weight, v)
372
+ return a.reshape(bs, -1, length)
373
+
374
+ @staticmethod
375
+ def count_flops(model, _x, y):
376
+ return count_flops_attn(model, _x, y)
377
+
378
+
379
+ class QKVAttention(nn.Module):
380
+ """
381
+ A module which performs QKV attention and splits in a different order.
382
+ """
383
+
384
+ def __init__(self, n_heads):
385
+ super().__init__()
386
+ self.n_heads = n_heads
387
+
388
+ def forward(self, qkv):
389
+ """
390
+ Apply QKV attention.
391
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
392
+ :return: an [N x (H * C) x T] tensor after attention.
393
+ """
394
+ bs, width, length = qkv.shape
395
+ assert width % (3 * self.n_heads) == 0
396
+ ch = width // (3 * self.n_heads)
397
+ q, k, v = qkv.chunk(3, dim=1)
398
+ scale = 1 / math.sqrt(math.sqrt(ch))
399
+ weight = th.einsum(
400
+ "bct,bcs->bts",
401
+ (q * scale).view(bs * self.n_heads, ch, length),
402
+ (k * scale).view(bs * self.n_heads, ch, length),
403
+ ) # More stable with f16 than dividing afterwards
404
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
405
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
406
+ return a.reshape(bs, -1, length)
407
+
408
+ @staticmethod
409
+ def count_flops(model, _x, y):
410
+ return count_flops_attn(model, _x, y)
411
+
412
+
413
+ class UNetModel(nn.Module):
414
+ """
415
+ The full UNet model with attention and timestep embedding.
416
+ :param in_channels: channels in the input Tensor.
417
+ :param model_channels: base channel count for the model.
418
+ :param out_channels: channels in the output Tensor.
419
+ :param num_res_blocks: number of residual blocks per downsample.
420
+ :param attention_resolutions: a collection of downsample rates at which
421
+ attention will take place. May be a set, list, or tuple.
422
+ For example, if this contains 4, then at 4x downsampling, attention
423
+ will be used.
424
+ :param dropout: the dropout probability.
425
+ :param channel_mult: channel multiplier for each level of the UNet.
426
+ :param conv_resample: if True, use learned convolutions for upsampling and
427
+ downsampling.
428
+ :param dims: determines if the signal is 1D, 2D, or 3D.
429
+ :param num_classes: if specified (as an int), then this model will be
430
+ class-conditional with `num_classes` classes.
431
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
432
+ :param num_heads: the number of attention heads in each attention layer.
433
+ :param num_heads_channels: if specified, ignore num_heads and instead use
434
+ a fixed channel width per attention head.
435
+ :param num_heads_upsample: works with num_heads to set a different number
436
+ of heads for upsampling. Deprecated.
437
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
438
+ :param resblock_updown: use residual blocks for up/downsampling.
439
+ :param use_new_attention_order: use a different attention pattern for potentially
440
+ increased efficiency.
441
+ """
442
+
443
+ def __init__(
444
+ self,
445
+ image_size,
446
+ in_channels,
447
+ model_channels,
448
+ out_channels,
449
+ num_res_blocks,
450
+ attention_resolutions,
451
+ dropout=0,
452
+ channel_mult=(1, 2, 4, 8),
453
+ conv_resample=True,
454
+ dims=2,
455
+ num_classes=None,
456
+ use_checkpoint=False,
457
+ use_fp16=False,
458
+ num_heads=-1,
459
+ num_head_channels=-1,
460
+ num_heads_upsample=-1,
461
+ use_scale_shift_norm=False,
462
+ resblock_updown=False,
463
+ use_new_attention_order=False,
464
+ use_spatial_transformer=False, # custom transformer support
465
+ transformer_depth=1, # custom transformer support
466
+ context_dim=None, # custom transformer support
467
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
468
+ legacy=True,
469
+ ):
470
+ super().__init__()
471
+ if use_spatial_transformer:
472
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
473
+
474
+ if context_dim is not None:
475
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
476
+ from omegaconf.listconfig import ListConfig
477
+ if type(context_dim) == ListConfig:
478
+ context_dim = list(context_dim)
479
+
480
+ if num_heads_upsample == -1:
481
+ num_heads_upsample = num_heads
482
+
483
+ if num_heads == -1:
484
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
485
+
486
+ if num_head_channels == -1:
487
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
488
+
489
+ self.image_size = image_size
490
+ self.in_channels = in_channels
491
+ self.model_channels = model_channels
492
+ self.out_channels = out_channels
493
+ self.num_res_blocks = num_res_blocks
494
+ self.attention_resolutions = attention_resolutions
495
+ self.dropout = dropout
496
+ self.channel_mult = channel_mult
497
+ self.conv_resample = conv_resample
498
+ self.num_classes = num_classes
499
+ self.use_checkpoint = use_checkpoint
500
+ self.dtype = th.float16 if use_fp16 else th.float32
501
+ self.num_heads = num_heads
502
+ self.num_head_channels = num_head_channels
503
+ self.num_heads_upsample = num_heads_upsample
504
+ self.predict_codebook_ids = n_embed is not None
505
+
506
+ time_embed_dim = model_channels * 4
507
+ self.time_embed = nn.Sequential(
508
+ linear(model_channels, time_embed_dim),
509
+ nn.SiLU(),
510
+ linear(time_embed_dim, time_embed_dim),
511
+ )
512
+
513
+ if self.num_classes is not None:
514
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
515
+
516
+ self.input_blocks = nn.ModuleList(
517
+ [
518
+ TimestepEmbedSequential(
519
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
520
+ )
521
+ ]
522
+ )
523
+ self._feature_size = model_channels
524
+ input_block_chans = [model_channels]
525
+ ch = model_channels
526
+ ds = 1
527
+ for level, mult in enumerate(channel_mult):
528
+ for _ in range(num_res_blocks):
529
+ layers = [
530
+ ResBlock(
531
+ ch,
532
+ time_embed_dim,
533
+ dropout,
534
+ out_channels=mult * model_channels,
535
+ dims=dims,
536
+ use_checkpoint=use_checkpoint,
537
+ use_scale_shift_norm=use_scale_shift_norm,
538
+ )
539
+ ]
540
+ ch = mult * model_channels
541
+ if ds in attention_resolutions:
542
+ if num_head_channels == -1:
543
+ dim_head = ch // num_heads
544
+ else:
545
+ num_heads = ch // num_head_channels
546
+ dim_head = num_head_channels
547
+ if legacy:
548
+ num_heads = 1
549
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
550
+ layers.append(
551
+ AttentionBlock(
552
+ ch,
553
+ use_checkpoint=use_checkpoint,
554
+ num_heads=num_heads,
555
+ num_head_channels=dim_head,
556
+ use_new_attention_order=use_new_attention_order,
557
+ ) if not use_spatial_transformer else SpatialTransformer(
558
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
559
+ )
560
+ )
561
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
562
+ self._feature_size += ch
563
+ input_block_chans.append(ch)
564
+ if level != len(channel_mult) - 1:
565
+ out_ch = ch
566
+ self.input_blocks.append(
567
+ TimestepEmbedSequential(
568
+ ResBlock(
569
+ ch,
570
+ time_embed_dim,
571
+ dropout,
572
+ out_channels=out_ch,
573
+ dims=dims,
574
+ use_checkpoint=use_checkpoint,
575
+ use_scale_shift_norm=use_scale_shift_norm,
576
+ down=True,
577
+ )
578
+ if resblock_updown
579
+ else Downsample(
580
+ ch, conv_resample, dims=dims, out_channels=out_ch
581
+ )
582
+ )
583
+ )
584
+ ch = out_ch
585
+ input_block_chans.append(ch)
586
+ ds *= 2
587
+ self._feature_size += ch
588
+
589
+ if num_head_channels == -1:
590
+ dim_head = ch // num_heads
591
+ else:
592
+ num_heads = ch // num_head_channels
593
+ dim_head = num_head_channels
594
+ if legacy:
595
+ num_heads = 1
596
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
597
+ self.middle_block = TimestepEmbedSequential(
598
+ ResBlock(
599
+ ch,
600
+ time_embed_dim,
601
+ dropout,
602
+ dims=dims,
603
+ use_checkpoint=use_checkpoint,
604
+ use_scale_shift_norm=use_scale_shift_norm,
605
+ ),
606
+ AttentionBlock(
607
+ ch,
608
+ use_checkpoint=use_checkpoint,
609
+ num_heads=num_heads,
610
+ num_head_channels=dim_head,
611
+ use_new_attention_order=use_new_attention_order,
612
+ ) if not use_spatial_transformer else SpatialTransformer(
613
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
614
+ ),
615
+ ResBlock(
616
+ ch,
617
+ time_embed_dim,
618
+ dropout,
619
+ dims=dims,
620
+ use_checkpoint=use_checkpoint,
621
+ use_scale_shift_norm=use_scale_shift_norm,
622
+ ),
623
+ )
624
+ self._feature_size += ch
625
+
626
+ self.output_blocks = nn.ModuleList([])
627
+ for level, mult in list(enumerate(channel_mult))[::-1]:
628
+ for i in range(num_res_blocks + 1):
629
+ ich = input_block_chans.pop()
630
+ layers = [
631
+ ResBlock(
632
+ ch + ich,
633
+ time_embed_dim,
634
+ dropout,
635
+ out_channels=model_channels * mult,
636
+ dims=dims,
637
+ use_checkpoint=use_checkpoint,
638
+ use_scale_shift_norm=use_scale_shift_norm,
639
+ )
640
+ ]
641
+ ch = model_channels * mult
642
+ if ds in attention_resolutions:
643
+ if num_head_channels == -1:
644
+ dim_head = ch // num_heads
645
+ else:
646
+ num_heads = ch // num_head_channels
647
+ dim_head = num_head_channels
648
+ if legacy:
649
+ num_heads = 1
650
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
651
+ layers.append(
652
+ AttentionBlock(
653
+ ch,
654
+ use_checkpoint=use_checkpoint,
655
+ num_heads=num_heads_upsample,
656
+ num_head_channels=dim_head,
657
+ use_new_attention_order=use_new_attention_order,
658
+ ) if not use_spatial_transformer else SpatialTransformer(
659
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
660
+ )
661
+ )
662
+ if level and i == num_res_blocks:
663
+ out_ch = ch
664
+ layers.append(
665
+ ResBlock(
666
+ ch,
667
+ time_embed_dim,
668
+ dropout,
669
+ out_channels=out_ch,
670
+ dims=dims,
671
+ use_checkpoint=use_checkpoint,
672
+ use_scale_shift_norm=use_scale_shift_norm,
673
+ up=True,
674
+ )
675
+ if resblock_updown
676
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
677
+ )
678
+ ds //= 2
679
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
680
+ self._feature_size += ch
681
+
682
+ self.out = nn.Sequential(
683
+ normalization(ch),
684
+ nn.SiLU(),
685
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
686
+ )
687
+ if self.predict_codebook_ids:
688
+ self.id_predictor = nn.Sequential(
689
+ normalization(ch),
690
+ conv_nd(dims, model_channels, n_embed, 1),
691
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
692
+ )
693
+
694
+ def convert_to_fp16(self):
695
+ """
696
+ Convert the torso of the model to float16.
697
+ """
698
+ self.input_blocks.apply(convert_module_to_f16)
699
+ self.middle_block.apply(convert_module_to_f16)
700
+ self.output_blocks.apply(convert_module_to_f16)
701
+
702
+ def convert_to_fp32(self):
703
+ """
704
+ Convert the torso of the model to float32.
705
+ """
706
+ self.input_blocks.apply(convert_module_to_f32)
707
+ self.middle_block.apply(convert_module_to_f32)
708
+ self.output_blocks.apply(convert_module_to_f32)
709
+
710
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
711
+ """
712
+ Apply the model to an input batch.
713
+ :param x: an [N x C x ...] Tensor of inputs.
714
+ :param timesteps: a 1-D batch of timesteps.
715
+ :param context: conditioning plugged in via crossattn
716
+ :param y: an [N] Tensor of labels, if class-conditional.
717
+ :return: an [N x C x ...] Tensor of outputs.
718
+ """
719
+ assert (y is not None) == (
720
+ self.num_classes is not None
721
+ ), "must specify y if and only if the model is class-conditional"
722
+ hs = []
723
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
724
+ emb = self.time_embed(t_emb)
725
+
726
+ if self.num_classes is not None:
727
+ assert y.shape == (x.shape[0],)
728
+ emb = emb + self.label_emb(y)
729
+
730
+ h = x.type(self.dtype)
731
+ for module in self.input_blocks:
732
+ h = module(h, emb, context)
733
+ hs.append(h)
734
+ h = self.middle_block(h, emb, context)
735
+ for module in self.output_blocks:
736
+ h = th.cat([h, hs.pop()], dim=1)
737
+ h = module(h, emb, context)
738
+ h = h.type(x.dtype)
739
+ if self.predict_codebook_ids:
740
+ return self.id_predictor(h)
741
+ else:
742
+ return self.out(h)
743
+
744
+
745
+ class EncoderUNetModel(nn.Module):
746
+ """
747
+ The half UNet model with attention and timestep embedding.
748
+ For usage, see UNet.
749
+ """
750
+
751
+ def __init__(
752
+ self,
753
+ image_size,
754
+ in_channels,
755
+ model_channels,
756
+ out_channels,
757
+ num_res_blocks,
758
+ attention_resolutions,
759
+ dropout=0,
760
+ channel_mult=(1, 2, 4, 8),
761
+ conv_resample=True,
762
+ dims=2,
763
+ use_checkpoint=False,
764
+ use_fp16=False,
765
+ num_heads=1,
766
+ num_head_channels=-1,
767
+ num_heads_upsample=-1,
768
+ use_scale_shift_norm=False,
769
+ resblock_updown=False,
770
+ use_new_attention_order=False,
771
+ pool="adaptive",
772
+ *args,
773
+ **kwargs
774
+ ):
775
+ super().__init__()
776
+
777
+ if num_heads_upsample == -1:
778
+ num_heads_upsample = num_heads
779
+
780
+ self.in_channels = in_channels
781
+ self.model_channels = model_channels
782
+ self.out_channels = out_channels
783
+ self.num_res_blocks = num_res_blocks
784
+ self.attention_resolutions = attention_resolutions
785
+ self.dropout = dropout
786
+ self.channel_mult = channel_mult
787
+ self.conv_resample = conv_resample
788
+ self.use_checkpoint = use_checkpoint
789
+ self.dtype = th.float16 if use_fp16 else th.float32
790
+ self.num_heads = num_heads
791
+ self.num_head_channels = num_head_channels
792
+ self.num_heads_upsample = num_heads_upsample
793
+
794
+ time_embed_dim = model_channels * 4
795
+ self.time_embed = nn.Sequential(
796
+ linear(model_channels, time_embed_dim),
797
+ nn.SiLU(),
798
+ linear(time_embed_dim, time_embed_dim),
799
+ )
800
+
801
+ self.input_blocks = nn.ModuleList(
802
+ [
803
+ TimestepEmbedSequential(
804
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
805
+ )
806
+ ]
807
+ )
808
+ self._feature_size = model_channels
809
+ input_block_chans = [model_channels]
810
+ ch = model_channels
811
+ ds = 1
812
+ for level, mult in enumerate(channel_mult):
813
+ for _ in range(num_res_blocks):
814
+ layers = [
815
+ ResBlock(
816
+ ch,
817
+ time_embed_dim,
818
+ dropout,
819
+ out_channels=mult * model_channels,
820
+ dims=dims,
821
+ use_checkpoint=use_checkpoint,
822
+ use_scale_shift_norm=use_scale_shift_norm,
823
+ )
824
+ ]
825
+ ch = mult * model_channels
826
+ if ds in attention_resolutions:
827
+ layers.append(
828
+ AttentionBlock(
829
+ ch,
830
+ use_checkpoint=use_checkpoint,
831
+ num_heads=num_heads,
832
+ num_head_channels=num_head_channels,
833
+ use_new_attention_order=use_new_attention_order,
834
+ )
835
+ )
836
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
837
+ self._feature_size += ch
838
+ input_block_chans.append(ch)
839
+ if level != len(channel_mult) - 1:
840
+ out_ch = ch
841
+ self.input_blocks.append(
842
+ TimestepEmbedSequential(
843
+ ResBlock(
844
+ ch,
845
+ time_embed_dim,
846
+ dropout,
847
+ out_channels=out_ch,
848
+ dims=dims,
849
+ use_checkpoint=use_checkpoint,
850
+ use_scale_shift_norm=use_scale_shift_norm,
851
+ down=True,
852
+ )
853
+ if resblock_updown
854
+ else Downsample(
855
+ ch, conv_resample, dims=dims, out_channels=out_ch
856
+ )
857
+ )
858
+ )
859
+ ch = out_ch
860
+ input_block_chans.append(ch)
861
+ ds *= 2
862
+ self._feature_size += ch
863
+
864
+ self.middle_block = TimestepEmbedSequential(
865
+ ResBlock(
866
+ ch,
867
+ time_embed_dim,
868
+ dropout,
869
+ dims=dims,
870
+ use_checkpoint=use_checkpoint,
871
+ use_scale_shift_norm=use_scale_shift_norm,
872
+ ),
873
+ AttentionBlock(
874
+ ch,
875
+ use_checkpoint=use_checkpoint,
876
+ num_heads=num_heads,
877
+ num_head_channels=num_head_channels,
878
+ use_new_attention_order=use_new_attention_order,
879
+ ),
880
+ ResBlock(
881
+ ch,
882
+ time_embed_dim,
883
+ dropout,
884
+ dims=dims,
885
+ use_checkpoint=use_checkpoint,
886
+ use_scale_shift_norm=use_scale_shift_norm,
887
+ ),
888
+ )
889
+ self._feature_size += ch
890
+ self.pool = pool
891
+ if pool == "adaptive":
892
+ self.out = nn.Sequential(
893
+ normalization(ch),
894
+ nn.SiLU(),
895
+ nn.AdaptiveAvgPool2d((1, 1)),
896
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
897
+ nn.Flatten(),
898
+ )
899
+ elif pool == "attention":
900
+ assert num_head_channels != -1
901
+ self.out = nn.Sequential(
902
+ normalization(ch),
903
+ nn.SiLU(),
904
+ AttentionPool2d(
905
+ (image_size // ds), ch, num_head_channels, out_channels
906
+ ),
907
+ )
908
+ elif pool == "spatial":
909
+ self.out = nn.Sequential(
910
+ nn.Linear(self._feature_size, 2048),
911
+ nn.ReLU(),
912
+ nn.Linear(2048, self.out_channels),
913
+ )
914
+ elif pool == "spatial_v2":
915
+ self.out = nn.Sequential(
916
+ nn.Linear(self._feature_size, 2048),
917
+ normalization(2048),
918
+ nn.SiLU(),
919
+ nn.Linear(2048, self.out_channels),
920
+ )
921
+ else:
922
+ raise NotImplementedError(f"Unexpected {pool} pooling")
923
+
924
+ def convert_to_fp16(self):
925
+ """
926
+ Convert the torso of the model to float16.
927
+ """
928
+ self.input_blocks.apply(convert_module_to_f16)
929
+ self.middle_block.apply(convert_module_to_f16)
930
+
931
+ def convert_to_fp32(self):
932
+ """
933
+ Convert the torso of the model to float32.
934
+ """
935
+ self.input_blocks.apply(convert_module_to_f32)
936
+ self.middle_block.apply(convert_module_to_f32)
937
+
938
+ def forward(self, x, timesteps):
939
+ """
940
+ Apply the model to an input batch.
941
+ :param x: an [N x C x ...] Tensor of inputs.
942
+ :param timesteps: a 1-D batch of timesteps.
943
+ :return: an [N x K] Tensor of outputs.
944
+ """
945
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
946
+
947
+ results = []
948
+ h = x.type(self.dtype)
949
+ for module in self.input_blocks:
950
+ h = module(h, emb)
951
+ if self.pool.startswith("spatial"):
952
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
953
+ h = self.middle_block(h, emb)
954
+ if self.pool.startswith("spatial"):
955
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
956
+ h = th.cat(results, axis=-1)
957
+ return self.out(h)
958
+ else:
959
+ h = h.type(x.dtype)
960
+ return self.out(h)
961
+
latent-diffusion/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+
126
+ with torch.no_grad():
127
+ output_tensors = ctx.run_function(*ctx.input_tensors)
128
+ return output_tensors
129
+
130
+ @staticmethod
131
+ def backward(ctx, *output_grads):
132
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
+ with torch.enable_grad():
134
+ # Fixes a bug where the first op in run_function modifies the
135
+ # Tensor storage in place, which is not allowed for detach()'d
136
+ # Tensors.
137
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
+ output_tensors = ctx.run_function(*shallow_copies)
139
+ input_grads = torch.autograd.grad(
140
+ output_tensors,
141
+ ctx.input_tensors + ctx.input_params,
142
+ output_grads,
143
+ allow_unused=True,
144
+ )
145
+ del ctx.input_tensors
146
+ del ctx.input_params
147
+ del output_tensors
148
+ return (None, None) + input_grads
149
+
150
+
151
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
+ """
153
+ Create sinusoidal timestep embeddings.
154
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
+ These may be fractional.
156
+ :param dim: the dimension of the output.
157
+ :param max_period: controls the minimum frequency of the embeddings.
158
+ :return: an [N x dim] Tensor of positional embeddings.
159
+ """
160
+ if not repeat_only:
161
+ half = dim // 2
162
+ freqs = torch.exp(
163
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
+ ).to(device=timesteps.device)
165
+ args = timesteps[:, None].float() * freqs[None]
166
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
+ if dim % 2:
168
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
+ else:
170
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
171
+ return embedding
172
+
173
+
174
+ def zero_module(module):
175
+ """
176
+ Zero out the parameters of a module and return it.
177
+ """
178
+ for p in module.parameters():
179
+ p.detach().zero_()
180
+ return module
181
+
182
+
183
+ def scale_module(module, scale):
184
+ """
185
+ Scale the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().mul_(scale)
189
+ return module
190
+
191
+
192
+ def mean_flat(tensor):
193
+ """
194
+ Take the mean over all non-batch dimensions.
195
+ """
196
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
+
198
+
199
+ def normalization(channels):
200
+ """
201
+ Make a standard normalization layer.
202
+ :param channels: number of input channels.
203
+ :return: an nn.Module for normalization.
204
+ """
205
+ return GroupNorm32(32, channels)
206
+
207
+
208
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
+ class SiLU(nn.Module):
210
+ def forward(self, x):
211
+ return x * torch.sigmoid(x)
212
+
213
+
214
+ class GroupNorm32(nn.GroupNorm):
215
+ def forward(self, x):
216
+ return super().forward(x.float()).type(x.dtype)
217
+
218
+ def conv_nd(dims, *args, **kwargs):
219
+ """
220
+ Create a 1D, 2D, or 3D convolution module.
221
+ """
222
+ if dims == 1:
223
+ return nn.Conv1d(*args, **kwargs)
224
+ elif dims == 2:
225
+ return nn.Conv2d(*args, **kwargs)
226
+ elif dims == 3:
227
+ return nn.Conv3d(*args, **kwargs)
228
+ raise ValueError(f"unsupported dimensions: {dims}")
229
+
230
+
231
+ def linear(*args, **kwargs):
232
+ """
233
+ Create a linear module.
234
+ """
235
+ return nn.Linear(*args, **kwargs)
236
+
237
+
238
+ def avg_pool_nd(dims, *args, **kwargs):
239
+ """
240
+ Create a 1D, 2D, or 3D average pooling module.
241
+ """
242
+ if dims == 1:
243
+ return nn.AvgPool1d(*args, **kwargs)
244
+ elif dims == 2:
245
+ return nn.AvgPool2d(*args, **kwargs)
246
+ elif dims == 3:
247
+ return nn.AvgPool3d(*args, **kwargs)
248
+ raise ValueError(f"unsupported dimensions: {dims}")
249
+
250
+
251
+ class HybridConditioner(nn.Module):
252
+
253
+ def __init__(self, c_concat_config, c_crossattn_config):
254
+ super().__init__()
255
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
256
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
+
258
+ def forward(self, c_concat, c_crossattn):
259
+ c_concat = self.concat_conditioner(c_concat)
260
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
261
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
+
263
+
264
+ def noise_like(shape, device, repeat=False):
265
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
+ noise = lambda: torch.randn(shape, device=device)
267
+ return repeat_noise() if repeat else noise()
latent-diffusion/ldm/modules/distributions/__init__.py ADDED
File without changes
latent-diffusion/ldm/modules/distributions/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (198 Bytes). View file
 
latent-diffusion/ldm/modules/distributions/__pycache__/distributions.cpython-39.pyc ADDED
Binary file (3.81 kB). View file
 
latent-diffusion/ldm/modules/distributions/distributions.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class AbstractDistribution:
6
+ def sample(self):
7
+ raise NotImplementedError()
8
+
9
+ def mode(self):
10
+ raise NotImplementedError()
11
+
12
+
13
+ class DiracDistribution(AbstractDistribution):
14
+ def __init__(self, value):
15
+ self.value = value
16
+
17
+ def sample(self):
18
+ return self.value
19
+
20
+ def mode(self):
21
+ return self.value
22
+
23
+
24
+ class DiagonalGaussianDistribution(object):
25
+ def __init__(self, parameters, deterministic=False):
26
+ self.parameters = parameters
27
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
+ self.deterministic = deterministic
30
+ self.std = torch.exp(0.5 * self.logvar)
31
+ self.var = torch.exp(self.logvar)
32
+ if self.deterministic:
33
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
+
35
+ def sample(self):
36
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
+ return x
38
+
39
+ def kl(self, other=None):
40
+ if self.deterministic:
41
+ return torch.Tensor([0.])
42
+ else:
43
+ if other is None:
44
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
+ + self.var - 1.0 - self.logvar,
46
+ dim=[1, 2, 3])
47
+ else:
48
+ return 0.5 * torch.sum(
49
+ torch.pow(self.mean - other.mean, 2) / other.var
50
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
+ dim=[1, 2, 3])
52
+
53
+ def nll(self, sample, dims=[1,2,3]):
54
+ if self.deterministic:
55
+ return torch.Tensor([0.])
56
+ logtwopi = np.log(2.0 * np.pi)
57
+ return 0.5 * torch.sum(
58
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
+ dim=dims)
60
+
61
+ def mode(self):
62
+ return self.mean
63
+
64
+
65
+ def normal_kl(mean1, logvar1, mean2, logvar2):
66
+ """
67
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
+ Compute the KL divergence between two gaussians.
69
+ Shapes are automatically broadcasted, so batches can be compared to
70
+ scalars, among other use cases.
71
+ """
72
+ tensor = None
73
+ for obj in (mean1, logvar1, mean2, logvar2):
74
+ if isinstance(obj, torch.Tensor):
75
+ tensor = obj
76
+ break
77
+ assert tensor is not None, "at least one argument must be a Tensor"
78
+
79
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
80
+ # Tensors, but it does not work for torch.exp().
81
+ logvar1, logvar2 = [
82
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
+ for x in (logvar1, logvar2)
84
+ ]
85
+
86
+ return 0.5 * (
87
+ -1.0
88
+ + logvar2
89
+ - logvar1
90
+ + torch.exp(logvar1 - logvar2)
91
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
+ )
latent-diffusion/ldm/modules/ema.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class LitEma(nn.Module):
6
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
7
+ super().__init__()
8
+ if decay < 0.0 or decay > 1.0:
9
+ raise ValueError('Decay must be between 0 and 1')
10
+
11
+ self.m_name2s_name = {}
12
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
14
+ else torch.tensor(-1,dtype=torch.int))
15
+
16
+ for name, p in model.named_parameters():
17
+ if p.requires_grad:
18
+ #remove as '.'-character is not allowed in buffers
19
+ s_name = name.replace('.','')
20
+ self.m_name2s_name.update({name:s_name})
21
+ self.register_buffer(s_name,p.clone().detach().data)
22
+
23
+ self.collected_params = []
24
+
25
+ def forward(self,model):
26
+ decay = self.decay
27
+
28
+ if self.num_updates >= 0:
29
+ self.num_updates += 1
30
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
31
+
32
+ one_minus_decay = 1.0 - decay
33
+
34
+ with torch.no_grad():
35
+ m_param = dict(model.named_parameters())
36
+ shadow_params = dict(self.named_buffers())
37
+
38
+ for key in m_param:
39
+ if m_param[key].requires_grad:
40
+ sname = self.m_name2s_name[key]
41
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
42
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
43
+ else:
44
+ assert not key in self.m_name2s_name
45
+
46
+ def copy_to(self, model):
47
+ m_param = dict(model.named_parameters())
48
+ shadow_params = dict(self.named_buffers())
49
+ for key in m_param:
50
+ if m_param[key].requires_grad:
51
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
52
+ else:
53
+ assert not key in self.m_name2s_name
54
+
55
+ def store(self, parameters):
56
+ """
57
+ Save the current parameters for restoring later.
58
+ Args:
59
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
60
+ temporarily stored.
61
+ """
62
+ self.collected_params = [param.clone() for param in parameters]
63
+
64
+ def restore(self, parameters):
65
+ """
66
+ Restore the parameters stored with the `store` method.
67
+ Useful to validate the model with EMA parameters without affecting the
68
+ original optimization process. Store the parameters before the
69
+ `copy_to` method. After validation (or model saving), use this to
70
+ restore the former parameters.
71
+ Args:
72
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
73
+ updated with the stored parameters.
74
+ """
75
+ for c_param, param in zip(self.collected_params, parameters):
76
+ param.data.copy_(c_param.data)