|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import spaces |
|
|
import torch |
|
|
from diffusers import SanaSprintPipeline |
|
|
import peft |
|
|
from peft.tuners.lora.layer import Linear as LoraLinear |
|
|
import types |
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
adapter_name = "hypernoise_adapter" |
|
|
|
|
|
|
|
|
pipe = SanaSprintPipeline.from_pretrained( |
|
|
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", |
|
|
torch_dtype=dtype, |
|
|
).to(device, dtype) |
|
|
|
|
|
pipe.transformer = peft.PeftModel.from_pretrained( |
|
|
pipe.transformer, |
|
|
"lucaeyring/HyperNoise_Sana_Sprint_0.6B", |
|
|
adapter_name=adapter_name, |
|
|
dtype=dtype, |
|
|
).to(device, dtype) |
|
|
|
|
|
|
|
|
def scaled_base_lora_forward(self, x, *args, **kwargs): |
|
|
if self.disable_adapters: |
|
|
return self.base_layer(x, *args, **kwargs) |
|
|
return self.lora_B[adapter_name](self.lora_A[adapter_name](x)) * self.scaling[adapter_name] |
|
|
|
|
|
|
|
|
for name, module in pipe.transformer.base_model.model.named_modules(): |
|
|
if name == "proj_out" and isinstance(module, LoraLinear): |
|
|
module.forward = types.MethodType(scaled_base_lora_forward, module) |
|
|
break |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
@spaces.GPU() |
|
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, |
|
|
num_inference_steps=4, guidance_scale=4.5, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
|
|
|
|
latent_height = height // 32 |
|
|
latent_width = width // 32 |
|
|
|
|
|
with torch.inference_mode(): |
|
|
|
|
|
prompt_embeds, prompt_attention_mask = pipe.encode_prompt( |
|
|
[prompt], |
|
|
device=device |
|
|
) |
|
|
|
|
|
|
|
|
init_latents = torch.randn( |
|
|
[1, 32, latent_height, latent_width], |
|
|
device=device, |
|
|
dtype=dtype |
|
|
) |
|
|
|
|
|
|
|
|
pipe.transformer.enable_adapter_layers() |
|
|
modulated_latents = pipe.transformer( |
|
|
hidden_states=init_latents, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
encoder_attention_mask=prompt_attention_mask, |
|
|
guidance=torch.tensor([guidance_scale], device=device, dtype=dtype) * 0.1, |
|
|
timestep=torch.tensor([1.0], device=device, dtype=dtype), |
|
|
).sample + init_latents |
|
|
|
|
|
|
|
|
pipe.transformer.disable_adapter_layers() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_inference_steps == 2: |
|
|
|
|
|
image = pipe( |
|
|
latents=modulated_latents, |
|
|
prompt_embeds=prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
num_inference_steps=num_inference_steps, |
|
|
).images[0] |
|
|
else: |
|
|
|
|
|
|
|
|
pipe.scheduler.set_timesteps( |
|
|
num_inference_steps, |
|
|
device=device, |
|
|
timesteps=torch.linspace(1.57080, 0, num_inference_steps + 1, device=device) |
|
|
) |
|
|
|
|
|
|
|
|
latents = modulated_latents |
|
|
for i, t in enumerate(pipe.scheduler.timesteps[:-1]): |
|
|
|
|
|
timestep = t.expand(latents.shape[0]) |
|
|
|
|
|
|
|
|
noise_pred = pipe.transformer( |
|
|
hidden_states=latents, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
encoder_attention_mask=prompt_attention_mask, |
|
|
timestep=timestep, |
|
|
guidance=torch.tensor([0.0], device=device, dtype=dtype), |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
|
|
|
latents = pipe.scheduler.step( |
|
|
noise_pred, |
|
|
t, |
|
|
latents, |
|
|
return_dict=False |
|
|
)[0] |
|
|
|
|
|
|
|
|
latents = pipe._unpack_latents(latents, height, width, pipe.vae_scale_factor) |
|
|
latents = (latents / pipe.vae.scaling_factor) + pipe.vae.shift_factor |
|
|
image = pipe.vae.decode(latents, return_dict=False)[0] |
|
|
image = pipe.image_processor.postprocess(image, output_type="pil")[0] |
|
|
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
|
"A smiling slice of pizza doing yoga on a mountain top", |
|
|
"A fluffy cat wearing a wizard hat casting spells", |
|
|
"A robot painting a self-portrait in Van Gogh style", |
|
|
"A tiny dragon sleeping in a teacup", |
|
|
"An astronaut riding a unicorn through a rainbow", |
|
|
] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 520px; |
|
|
} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown("""# HyperNoise Sana Sprint 0.6B |
|
|
|
|
|
Fast text-to-image generation with HyperNoise adapter for Sana Sprint model. |
|
|
|
|
|
[[Sana Sprint Model](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers)] |
|
|
[[HyperNoise Adapter](https://huggingface.co/lucaeyring/HyperNoise_Sana_Sprint_0.6B)] |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="Enter your prompt", |
|
|
container=False, |
|
|
) |
|
|
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=42, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=64, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=64, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=20, |
|
|
step=1, |
|
|
value=4, |
|
|
) |
|
|
|
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance Scale", |
|
|
minimum=1.0, |
|
|
maximum=10.0, |
|
|
step=0.5, |
|
|
value=4.5, |
|
|
) |
|
|
|
|
|
gr.Examples( |
|
|
examples=examples, |
|
|
fn=infer, |
|
|
inputs=[prompt], |
|
|
outputs=[result, seed], |
|
|
cache_examples="lazy" |
|
|
) |
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale], |
|
|
outputs=[result, seed] |
|
|
) |
|
|
|
|
|
demo.launch() |