Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -128,7 +128,6 @@ zoe.to(device)
|
|
| 128 |
pipe.to(device)
|
| 129 |
|
| 130 |
last_lora = ""
|
| 131 |
-
last_merged = False
|
| 132 |
last_fused = False
|
| 133 |
js = '''
|
| 134 |
var button = document.getElementById('button');
|
|
@@ -205,8 +204,20 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 205 |
del weights_sd
|
| 206 |
del lora_model
|
| 207 |
@spaces.GPU
|
| 208 |
-
def generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale,
|
| 209 |
-
global last_fused
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if last_lora != repo_name:
|
| 211 |
if(last_fused):
|
| 212 |
st = time.time()
|
|
@@ -259,10 +270,10 @@ def generate_image(prompt, negative, face_emb, face_image, image_strength, image
|
|
| 259 |
guidance_scale = guidance_scale,
|
| 260 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 261 |
).images[0]
|
|
|
|
| 262 |
return image
|
| 263 |
|
| 264 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 265 |
-
global last_lora, last_merged, last_fused, pipe
|
| 266 |
selected_state_index = selected_state.index
|
| 267 |
face_image = center_crop_image_as_square(face_image)
|
| 268 |
st = time.time()
|
|
@@ -276,6 +287,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 276 |
et = time.time()
|
| 277 |
elapsed_time = et - st
|
| 278 |
print('Calculating face embeds took: ', elapsed_time, 'seconds')
|
|
|
|
| 279 |
for lora_list in lora_defaults:
|
| 280 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 281 |
prompt_full = lora_list.get("prompt", None)
|
|
@@ -286,15 +298,6 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 286 |
print("Prompt:", prompt)
|
| 287 |
if(prompt == ""):
|
| 288 |
prompt = "a person"
|
| 289 |
-
#prepare face zoe
|
| 290 |
-
st = time.time()
|
| 291 |
-
with torch.no_grad():
|
| 292 |
-
image_zoe = zoe(face_image)
|
| 293 |
-
et = time.time()
|
| 294 |
-
elapsed_time = et - st
|
| 295 |
-
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 296 |
-
width, height = face_kps.size
|
| 297 |
-
images = [face_kps, image_zoe.resize((height, width))]
|
| 298 |
|
| 299 |
#if(selected_state.index < 0):
|
| 300 |
# if(selected_state.index == -9999):
|
|
@@ -315,12 +318,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 315 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 316 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 317 |
cross_attention_kwargs = None
|
| 318 |
-
print("Last LoRA: ", last_lora)
|
| 319 |
-
print("Current LoRA: ", repo_name)
|
| 320 |
-
print("Last fused: ", last_fused)
|
| 321 |
|
| 322 |
-
image = generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale,
|
| 323 |
-
last_lora = repo_name
|
| 324 |
return image, gr.update(visible=True)
|
| 325 |
|
| 326 |
def shuffle_gallery(sdxl_loras):
|
|
|
|
| 128 |
pipe.to(device)
|
| 129 |
|
| 130 |
last_lora = ""
|
|
|
|
| 131 |
last_fused = False
|
| 132 |
js = '''
|
| 133 |
var button = document.getElementById('button');
|
|
|
|
| 204 |
del weights_sd
|
| 205 |
del lora_model
|
| 206 |
@spaces.GPU
|
| 207 |
+
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, images, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index):
|
| 208 |
+
global last_fused, last_lora
|
| 209 |
+
print("Last LoRA: ", last_lora)
|
| 210 |
+
print("Current LoRA: ", repo_name)
|
| 211 |
+
print("Last fused: ", last_fused)
|
| 212 |
+
#prepare face zoe
|
| 213 |
+
st = time.time()
|
| 214 |
+
with torch.no_grad():
|
| 215 |
+
image_zoe = zoe(face_image)
|
| 216 |
+
width, height = face_kps.size
|
| 217 |
+
images = [face_kps, image_zoe.resize((height, width))]
|
| 218 |
+
et = time.time()
|
| 219 |
+
elapsed_time = et - st
|
| 220 |
+
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 221 |
if last_lora != repo_name:
|
| 222 |
if(last_fused):
|
| 223 |
st = time.time()
|
|
|
|
| 270 |
guidance_scale = guidance_scale,
|
| 271 |
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 272 |
).images[0]
|
| 273 |
+
last_lora = repo_name
|
| 274 |
return image
|
| 275 |
|
| 276 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 277 |
selected_state_index = selected_state.index
|
| 278 |
face_image = center_crop_image_as_square(face_image)
|
| 279 |
st = time.time()
|
|
|
|
| 287 |
et = time.time()
|
| 288 |
elapsed_time = et - st
|
| 289 |
print('Calculating face embeds took: ', elapsed_time, 'seconds')
|
| 290 |
+
|
| 291 |
for lora_list in lora_defaults:
|
| 292 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 293 |
prompt_full = lora_list.get("prompt", None)
|
|
|
|
| 298 |
print("Prompt:", prompt)
|
| 299 |
if(prompt == ""):
|
| 300 |
prompt = "a person"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
#if(selected_state.index < 0):
|
| 303 |
# if(selected_state.index == -9999):
|
|
|
|
| 318 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 319 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 320 |
cross_attention_kwargs = None
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
+
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, images, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index)
|
|
|
|
| 323 |
return image, gr.update(visible=True)
|
| 324 |
|
| 325 |
def shuffle_gallery(sdxl_loras):
|