|
import streamlit as st |
|
import os |
|
import pkg_resources |
|
|
|
|
|
def is_installed(package_name, version): |
|
try: |
|
pkg = pkg_resources.get_distribution(package_name) |
|
return pkg.version == version |
|
except pkg_resources.DistributionNotFound: |
|
return False |
|
|
|
|
|
st.set_page_config(page_title = 'Vulnerability Analysis', |
|
initial_sidebar_state='expanded', layout="wide") |
|
|
|
@st.cache_resource |
|
def install_packages(): |
|
install_commands = [] |
|
|
|
if not is_installed("spaces", "0.12.0"): |
|
install_commands.append("pip install spaces==0.17.0") |
|
|
|
if not is_installed("pydantic", "1.8.2"): |
|
install_commands.append("pip install pydantic==1.8.2") |
|
|
|
if not is_installed("typer", "0.4.0"): |
|
install_commands.append("pip install typer==0.4.0") |
|
|
|
if install_commands: |
|
os.system(" && ".join(install_commands)) |
|
|
|
|
|
install_packages() |
|
|
|
import appStore.vulnerability_analysis as vulnerability_analysis |
|
import appStore.target as target_analysis |
|
import appStore.doc_processing as processing |
|
from utils.uploadAndExample import add_upload |
|
from utils.vulnerability_classifier import label_dict |
|
from utils.config import model_dict |
|
import pandas as pd |
|
import plotly.express as px |
|
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
|
choice = st.sidebar.radio(label = 'Select the Document', |
|
help = 'You can upload the document \ |
|
or else you can try a example document', |
|
options = ('Upload Document', 'Try Example'), |
|
horizontal = True) |
|
add_upload(choice) |
|
|
|
|
|
model_options = ['Llama3.1-8B','Llama3.1-70B','Llama3.1-405B',] |
|
|
|
|
|
model_sel = st.selectbox('Select a model:', model_options) |
|
model_sel_name = model_dict[model_sel] |
|
|
|
st.session_state['model_sel_name'] = model_sel_name |
|
|
|
with st.container(): |
|
st.markdown("<h2 style='text-align: center;'> Vulnerability Analysis 3.0 </h2>", unsafe_allow_html=True) |
|
st.write(' ') |
|
|
|
with st.expander("ℹ️ - About this app", expanded=False): |
|
st.write( |
|
""" |
|
The Vulnerability Analysis App is an open-source\ |
|
digital tool which aims to assist policy analysts and \ |
|
other users in extracting and filtering references \ |
|
to different groups in vulnerable situations from public documents. \ |
|
We use Natural Language Processing (NLP), specifically deep \ |
|
learning-based text representations to search context-sensitively \ |
|
for mentions of the special needs of groups in vulnerable situations |
|
to cluster them thematically. |
|
For more understanding on Methodology [Click Here](https://vulnerability-analysis.streamlit.app/) |
|
""") |
|
|
|
st.write(""" |
|
What Happens in background? |
|
|
|
- Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\ |
|
In this step the document is broken into smaller paragraphs \ |
|
(based on word/sentence count). |
|
- Step 2: The paragraphs are then fed to the **Vulnerability Classifier** which detects if |
|
the paragraph contains any or multiple references to vulnerable groups. |
|
""") |
|
|
|
st.write("") |
|
|
|
|
|
apps = [processing.app, vulnerability_analysis.app, target_analysis.app] |
|
|
|
multiplier_val =1/len(apps) |
|
if st.button("Analyze Document"): |
|
prg = st.progress(0.0) |
|
for i,func in enumerate(apps): |
|
func() |
|
prg.progress((i+1)*multiplier_val) |
|
|
|
|
|
if 'key0' in st.session_state: |
|
|
|
vulnerability_analysis.vulnerability_display() |
|
target_analysis.target_display(model_sel_name=model_sel_name) |
|
|
|
|