Spaces:
Sleeping
Sleeping
refactor
Browse files- app.py +14 -20
- auditqa/process_chunks.py +1 -6
- auditqa/reader.py +29 -20
- auditqa/retriever.py +0 -7
- auditqa/utils.py +10 -10
app.py
CHANGED
|
@@ -14,20 +14,12 @@ from auditqa.retriever import get_context
|
|
| 14 |
from auditqa.reader import nvidia_client, dedicated_endpoint
|
| 15 |
from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template, get_client_location, get_client_ip
|
| 16 |
from dotenv import load_dotenv
|
|
|
|
| 17 |
from threading import Lock
|
| 18 |
from gradio.routes import Request
|
| 19 |
from qdrant_client import QdrantClient
|
| 20 |
import json
|
| 21 |
|
| 22 |
-
# TESTING DEBUG LOG
|
| 23 |
-
from auditqa.logging_config import setup_logging
|
| 24 |
-
setup_logging()
|
| 25 |
-
import logging
|
| 26 |
-
logger = logging.getLogger(__name__)
|
| 27 |
-
logger.setLevel(logging.DEBUG)
|
| 28 |
-
|
| 29 |
-
load_dotenv()
|
| 30 |
-
|
| 31 |
# # fetch tokens and model config params
|
| 32 |
SPACES_LOG = os.environ["SPACES_LOG"]
|
| 33 |
SPACES_LOG = os.getenv('SPACES_LOG')
|
|
@@ -50,7 +42,16 @@ scheduler = CommitScheduler(
|
|
| 50 |
every=2) # TESTING: every 2 seconds
|
| 51 |
|
| 52 |
#####--------------- VECTOR STORE -------------------------------------------------
|
| 53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def get_cloud_qdrant():
|
| 55 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 56 |
from langchain_community.vectorstores import Qdrant
|
|
@@ -102,13 +103,11 @@ def submit_feedback(feedback, logs_data):
|
|
| 102 |
"""Handle feedback submission"""
|
| 103 |
try:
|
| 104 |
if logs_data is None:
|
| 105 |
-
logger.error("No logs data available for feedback")
|
| 106 |
return gr.update(visible=False), gr.update(visible=True)
|
| 107 |
|
| 108 |
save_logs(scheduler, JSON_DATASET_PATH, logs_data, feedback)
|
| 109 |
return gr.update(visible=False), gr.update(visible=True)
|
| 110 |
except Exception as e:
|
| 111 |
-
logger.error(f"Error saving feedback: {e}")
|
| 112 |
# Still need to return the expected outputs even on error
|
| 113 |
return gr.update(visible=False), gr.update(visible=True)
|
| 114 |
|
|
@@ -149,16 +148,13 @@ async def chat(query, history, sources, reports, subtype, year, client_ip=None,
|
|
| 149 |
|
| 150 |
if not session_id: # Session managment
|
| 151 |
session_id = session_manager.create_session(client_ip)
|
| 152 |
-
logger.debug(f"Created new session: {session_id}")
|
| 153 |
else:
|
| 154 |
session_manager.update_session(session_id)
|
| 155 |
-
logger.debug(f"Updated existing session: {session_id}")
|
| 156 |
|
| 157 |
# Get session data
|
| 158 |
session_data = session_manager.get_session_data(session_id)
|
| 159 |
session_duration = session_manager.get_session_duration(session_id)
|
| 160 |
-
|
| 161 |
-
|
| 162 |
print(f">> NEW QUESTION : {query}")
|
| 163 |
print(f"history:{history}")
|
| 164 |
print(f"sources:{sources}")
|
|
@@ -232,7 +228,6 @@ async def chat(query, history, sources, reports, subtype, year, client_ip=None,
|
|
| 232 |
"answer": "",
|
| 233 |
"time": timestamp,
|
| 234 |
}
|
| 235 |
-
logger.debug(f"Logs data before save: {json.dumps(logs_data, indent=2)}")
|
| 236 |
|
| 237 |
if model_config.get('reader','TYPE') == 'NVIDIA':
|
| 238 |
chat_model = nvidia_client()
|
|
@@ -291,7 +286,6 @@ async def chat(query, history, sources, reports, subtype, year, client_ip=None,
|
|
| 291 |
await asyncio.sleep(0.05)
|
| 292 |
|
| 293 |
except Exception as e:
|
| 294 |
-
logger.error(f"Error in process_stream: {str(e)}")
|
| 295 |
raise
|
| 296 |
|
| 297 |
async for update in process_stream():
|
|
@@ -300,9 +294,9 @@ async def chat(query, history, sources, reports, subtype, year, client_ip=None,
|
|
| 300 |
try:
|
| 301 |
# Save log after streaming is complete
|
| 302 |
save_logs(scheduler, JSON_DATASET_PATH, logs_data)
|
| 303 |
-
logger.debug(f"Logs saved successfully")
|
| 304 |
except Exception as e:
|
| 305 |
-
|
|
|
|
| 306 |
|
| 307 |
|
| 308 |
|
|
|
|
| 14 |
from auditqa.reader import nvidia_client, dedicated_endpoint
|
| 15 |
from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template, get_client_location, get_client_ip
|
| 16 |
from dotenv import load_dotenv
|
| 17 |
+
load_dotenv()
|
| 18 |
from threading import Lock
|
| 19 |
from gradio.routes import Request
|
| 20 |
from qdrant_client import QdrantClient
|
| 21 |
import json
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# # fetch tokens and model config params
|
| 24 |
SPACES_LOG = os.environ["SPACES_LOG"]
|
| 25 |
SPACES_LOG = os.getenv('SPACES_LOG')
|
|
|
|
| 42 |
every=2) # TESTING: every 2 seconds
|
| 43 |
|
| 44 |
#####--------------- VECTOR STORE -------------------------------------------------
|
| 45 |
+
# reports contain the already created chunks from Markdown version of pdf reports
|
| 46 |
+
# document processing was done using : https://github.com/axa-group/Parsr
|
| 47 |
+
# We need to create the local vectorstore collection once using load_chunks
|
| 48 |
+
# vectorestore colection are stored on persistent storage so this needs to be run only once
|
| 49 |
+
# hence, comment out line below when creating for first time
|
| 50 |
+
#vectorstores = load_new_chunks()
|
| 51 |
+
# once the vectore embeddings are created we will use qdrant client to access these
|
| 52 |
+
# vectorstores = get_local_qdrant()
|
| 53 |
+
|
| 54 |
+
# Configure cloud Qdrant client #TESTING
|
| 55 |
def get_cloud_qdrant():
|
| 56 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 57 |
from langchain_community.vectorstores import Qdrant
|
|
|
|
| 103 |
"""Handle feedback submission"""
|
| 104 |
try:
|
| 105 |
if logs_data is None:
|
|
|
|
| 106 |
return gr.update(visible=False), gr.update(visible=True)
|
| 107 |
|
| 108 |
save_logs(scheduler, JSON_DATASET_PATH, logs_data, feedback)
|
| 109 |
return gr.update(visible=False), gr.update(visible=True)
|
| 110 |
except Exception as e:
|
|
|
|
| 111 |
# Still need to return the expected outputs even on error
|
| 112 |
return gr.update(visible=False), gr.update(visible=True)
|
| 113 |
|
|
|
|
| 148 |
|
| 149 |
if not session_id: # Session managment
|
| 150 |
session_id = session_manager.create_session(client_ip)
|
|
|
|
| 151 |
else:
|
| 152 |
session_manager.update_session(session_id)
|
|
|
|
| 153 |
|
| 154 |
# Get session data
|
| 155 |
session_data = session_manager.get_session_data(session_id)
|
| 156 |
session_duration = session_manager.get_session_duration(session_id)
|
| 157 |
+
|
|
|
|
| 158 |
print(f">> NEW QUESTION : {query}")
|
| 159 |
print(f"history:{history}")
|
| 160 |
print(f"sources:{sources}")
|
|
|
|
| 228 |
"answer": "",
|
| 229 |
"time": timestamp,
|
| 230 |
}
|
|
|
|
| 231 |
|
| 232 |
if model_config.get('reader','TYPE') == 'NVIDIA':
|
| 233 |
chat_model = nvidia_client()
|
|
|
|
| 286 |
await asyncio.sleep(0.05)
|
| 287 |
|
| 288 |
except Exception as e:
|
|
|
|
| 289 |
raise
|
| 290 |
|
| 291 |
async for update in process_stream():
|
|
|
|
| 294 |
try:
|
| 295 |
# Save log after streaming is complete
|
| 296 |
save_logs(scheduler, JSON_DATASET_PATH, logs_data)
|
|
|
|
| 297 |
except Exception as e:
|
| 298 |
+
raise
|
| 299 |
+
|
| 300 |
|
| 301 |
|
| 302 |
|
auditqa/process_chunks.py
CHANGED
|
@@ -17,11 +17,6 @@ from pathlib import Path
|
|
| 17 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
| 18 |
path_to_data = "./reports/"
|
| 19 |
|
| 20 |
-
# TESTING DEBUG LOG
|
| 21 |
-
from auditqa.logging_config import setup_logging
|
| 22 |
-
setup_logging()
|
| 23 |
-
import logging
|
| 24 |
-
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
|
| 27 |
##---------------------functions -------------------------------------------##
|
|
@@ -125,7 +120,7 @@ def load_new_chunks():
|
|
| 125 |
"""
|
| 126 |
this method reads through the files and report_list to create the vector database
|
| 127 |
"""
|
| 128 |
-
|
| 129 |
# we iterate through the files which contain information about its
|
| 130 |
# 'source'=='category', 'subtype', these are used in UI for document selection
|
| 131 |
# which will be used later for filtering database
|
|
|
|
| 17 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
| 18 |
path_to_data = "./reports/"
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
##---------------------functions -------------------------------------------##
|
|
|
|
| 120 |
"""
|
| 121 |
this method reads through the files and report_list to create the vector database
|
| 122 |
"""
|
| 123 |
+
|
| 124 |
# we iterate through the files which contain information about its
|
| 125 |
# 'source'=='category', 'subtype', these are used in UI for document selection
|
| 126 |
# which will be used later for filtering database
|
auditqa/reader.py
CHANGED
|
@@ -7,48 +7,57 @@ import os
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
load_dotenv()
|
| 9 |
|
| 10 |
-
# TESTING DEBUG LOG
|
| 11 |
-
from auditqa.logging_config import setup_logging
|
| 12 |
-
setup_logging()
|
| 13 |
-
import logging
|
| 14 |
-
logger = logging.getLogger(__name__)
|
| 15 |
-
|
| 16 |
model_config = getconfig("model_params.cfg")
|
| 17 |
# NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"] #TESTING
|
| 18 |
HF_token = os.environ["LLAMA_3_1"]
|
| 19 |
|
| 20 |
def nvidia_client():
|
| 21 |
-
logger.info("NVIDIA client activated")
|
| 22 |
""" returns the nvidia server client """
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
return client
|
| 30 |
-
except KeyError:
|
| 31 |
-
raise KeyError("NVIDIA_SERVERLESS environment variable not set. Required for NVIDIA endpoint.")
|
| 32 |
|
| 33 |
# TESTING VERSION
|
| 34 |
def dedicated_endpoint():
|
| 35 |
-
logger.info("Serverless endpoint activated")
|
| 36 |
try:
|
| 37 |
HF_token = os.environ["LLAMA_3_1"]
|
| 38 |
if not HF_token:
|
| 39 |
raise ValueError("LLAMA_3_1 environment variable is empty")
|
| 40 |
|
| 41 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 42 |
-
logger.info(f"Initializing InferenceClient with model: {model_id}")
|
| 43 |
|
| 44 |
client = InferenceClient(
|
| 45 |
model=model_id,
|
| 46 |
api_key=HF_token,
|
| 47 |
)
|
| 48 |
|
| 49 |
-
logger.info("Serverless InferenceClient initialization successful")
|
| 50 |
return client
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
-
logger.error(f"Error initializing dedicated endpoint: {str(e)}")
|
| 54 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
load_dotenv()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
model_config = getconfig("model_params.cfg")
|
| 11 |
# NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"] #TESTING
|
| 12 |
HF_token = os.environ["LLAMA_3_1"]
|
| 13 |
|
| 14 |
def nvidia_client():
|
|
|
|
| 15 |
""" returns the nvidia server client """
|
| 16 |
+
client = InferenceClient(
|
| 17 |
+
base_url=model_config.get('reader','NVIDIA_ENDPOINT'),
|
| 18 |
+
api_key=NVIDIA_SERVER)
|
| 19 |
+
print("getting nvidia client")
|
| 20 |
+
|
| 21 |
+
return client
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# TESTING VERSION
|
| 24 |
def dedicated_endpoint():
|
|
|
|
| 25 |
try:
|
| 26 |
HF_token = os.environ["LLAMA_3_1"]
|
| 27 |
if not HF_token:
|
| 28 |
raise ValueError("LLAMA_3_1 environment variable is empty")
|
| 29 |
|
| 30 |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
| 31 |
|
| 32 |
client = InferenceClient(
|
| 33 |
model=model_id,
|
| 34 |
api_key=HF_token,
|
| 35 |
)
|
| 36 |
|
|
|
|
| 37 |
return client
|
| 38 |
|
| 39 |
except Exception as e:
|
|
|
|
| 40 |
raise
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# def dedicated_endpoint():
|
| 44 |
+
# """ returns the dedicated server endpoint"""
|
| 45 |
+
|
| 46 |
+
# # Set up the streaming callback handler
|
| 47 |
+
# callback = StreamingStdOutCallbackHandler()
|
| 48 |
+
|
| 49 |
+
# # Initialize the HuggingFaceEndpoint with streaming enabled
|
| 50 |
+
# llm_qa = HuggingFaceEndpoint(
|
| 51 |
+
# endpoint_url=model_config.get('reader', 'DEDICATED_ENDPOINT'),
|
| 52 |
+
# max_new_tokens=int(model_config.get('reader','MAX_TOKENS')),
|
| 53 |
+
# repetition_penalty=1.03,
|
| 54 |
+
# timeout=70,
|
| 55 |
+
# huggingfacehub_api_token=HF_token,
|
| 56 |
+
# streaming=True, # Enable streaming for real-time token generation
|
| 57 |
+
# callbacks=[callback] # Add the streaming callback handler
|
| 58 |
+
# )
|
| 59 |
+
|
| 60 |
+
# # Create a ChatHuggingFace instance with the streaming-enabled endpoint
|
| 61 |
+
# chat_model = ChatHuggingFace(llm=llm_qa)
|
| 62 |
+
# print("getting dedicated endpoint wrapped in ChathuggingFace ")
|
| 63 |
+
# return chat_model
|
auditqa/retriever.py
CHANGED
|
@@ -4,11 +4,6 @@ from langchain.retrievers import ContextualCompressionRetriever
|
|
| 4 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 5 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 6 |
|
| 7 |
-
# TESTING DEBUG LOG
|
| 8 |
-
from auditqa.logging_config import setup_logging
|
| 9 |
-
setup_logging()
|
| 10 |
-
import logging
|
| 11 |
-
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
model_config = getconfig("model_params.cfg")
|
| 14 |
|
|
@@ -42,7 +37,6 @@ def create_filter(reports:list = [],sources:str =None,
|
|
| 42 |
|
| 43 |
|
| 44 |
def get_context(vectorstore,query,reports,sources,subtype,year):
|
| 45 |
-
logger.info("Retriever activated")
|
| 46 |
# create metadata filter
|
| 47 |
# filter = create_filter(reports=reports,sources=sources,subtype=subtype,year=year)
|
| 48 |
filter = None #TESTING
|
|
@@ -60,7 +54,6 @@ def get_context(vectorstore,query,reports,sources,subtype,year):
|
|
| 60 |
)
|
| 61 |
|
| 62 |
context_retrieved = compression_retriever.invoke(query)
|
| 63 |
-
logger.info(f"retrieved paragraphs:{len(context_retrieved)}")
|
| 64 |
print(f"retrieved paragraphs:{len(context_retrieved)}")
|
| 65 |
|
| 66 |
return context_retrieved
|
|
|
|
| 4 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 5 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
model_config = getconfig("model_params.cfg")
|
| 9 |
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
def get_context(vectorstore,query,reports,sources,subtype,year):
|
|
|
|
| 40 |
# create metadata filter
|
| 41 |
# filter = create_filter(reports=reports,sources=sources,subtype=subtype,year=year)
|
| 42 |
filter = None #TESTING
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
context_retrieved = compression_retriever.invoke(query)
|
|
|
|
| 57 |
print(f"retrieved paragraphs:{len(context_retrieved)}")
|
| 58 |
|
| 59 |
return context_retrieved
|
auditqa/utils.py
CHANGED
|
@@ -8,14 +8,9 @@ from langchain.schema import (
|
|
| 8 |
import requests
|
| 9 |
from datetime import datetime
|
| 10 |
from uuid import uuid4
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
-
# TESTING DEBUG LOG
|
| 14 |
-
from auditqa.logging_config import setup_logging
|
| 15 |
-
setup_logging()
|
| 16 |
-
import logging
|
| 17 |
-
logger = logging.getLogger(__name__)
|
| 18 |
-
|
| 19 |
|
| 20 |
def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
|
| 21 |
""" Every interaction with app saves the log of question and answer,
|
|
@@ -30,9 +25,7 @@ def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
|
|
| 30 |
with open(JSON_DATASET_PATH, 'a') as f:
|
| 31 |
json.dump(logs, f)
|
| 32 |
f.write("\n")
|
| 33 |
-
logger.info("logging done")
|
| 34 |
except Exception as e:
|
| 35 |
-
logger.error(f"Failed to save logs to {JSON_DATASET_PATH}: {str(e)}")
|
| 36 |
raise
|
| 37 |
|
| 38 |
|
|
@@ -124,12 +117,19 @@ def get_client_location(ip_address) -> dict | None:
|
|
| 124 |
)
|
| 125 |
if response.status_code == 200:
|
| 126 |
data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
return {
|
| 128 |
'city': data.get('city'),
|
| 129 |
'region': data.get('region'),
|
| 130 |
'country': data.get('country_name'),
|
| 131 |
-
'latitude':
|
| 132 |
-
'longitude':
|
| 133 |
}
|
| 134 |
elif response.status_code == 429:
|
| 135 |
logging.warning(f"Rate limit exceeded. Response: {response.text}")
|
|
|
|
| 8 |
import requests
|
| 9 |
from datetime import datetime
|
| 10 |
from uuid import uuid4
|
| 11 |
+
import random
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
|
| 16 |
""" Every interaction with app saves the log of question and answer,
|
|
|
|
| 25 |
with open(JSON_DATASET_PATH, 'a') as f:
|
| 26 |
json.dump(logs, f)
|
| 27 |
f.write("\n")
|
|
|
|
| 28 |
except Exception as e:
|
|
|
|
| 29 |
raise
|
| 30 |
|
| 31 |
|
|
|
|
| 117 |
)
|
| 118 |
if response.status_code == 200:
|
| 119 |
data = response.json()
|
| 120 |
+
# Add random noise between -0.01 and 0.01 degrees (roughly ±1km)
|
| 121 |
+
lat = data.get('latitude')
|
| 122 |
+
lon = data.get('longitude')
|
| 123 |
+
if lat is not None and lon is not None:
|
| 124 |
+
lat += random.uniform(-0.01, 0.01)
|
| 125 |
+
lon += random.uniform(-0.01, 0.01)
|
| 126 |
+
|
| 127 |
return {
|
| 128 |
'city': data.get('city'),
|
| 129 |
'region': data.get('region'),
|
| 130 |
'country': data.get('country_name'),
|
| 131 |
+
'latitude': lat,
|
| 132 |
+
'longitude': lon
|
| 133 |
}
|
| 134 |
elif response.status_code == 429:
|
| 135 |
logging.warning(f"Rate limit exceeded. Response: {response.text}")
|