mtyrrell commited on
Commit
5a3e284
·
1 Parent(s): 8512247
Files changed (6) hide show
  1. .gitignore +1 -1
  2. app.py +16 -37
  3. app_interactions.jsonl +7 -0
  4. auditqa/reader.py +1 -1
  5. auditqa/utils.py +9 -38
  6. logs/app.log +109 -0
.gitignore CHANGED
@@ -3,7 +3,7 @@
3
  /testing/
4
 
5
  /data/
6
-
7
 
8
  # Python cache files
9
  __pycache__/
 
3
  /testing/
4
 
5
  /data/
6
+ /json_dataset
7
 
8
  # Python cache files
9
  __pycache__/
app.py CHANGED
@@ -31,44 +31,25 @@ logger.setLevel(logging.DEBUG) # Ensure debug logging is enabled
31
  load_dotenv()
32
 
33
  # # fetch tokens and model config params
34
- # SPACES_LOG = os.environ["SPACES_LOG"]
35
- # model_config = getconfig("model_params.cfg")
36
-
37
- # # create the local logs repo
38
- # JSON_DATASET_DIR = Path("json_dataset")
39
- # JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
40
- # JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
41
-
42
- # # the logs are written to dataset repo periodically from local logs
43
- # # https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
44
- # scheduler = CommitScheduler(
45
- # repo_id="GIZ/spaces_logs",
46
- # repo_type="dataset",
47
- # folder_path=JSON_DATASET_DIR,
48
- # path_in_repo="audit_chatbot",
49
- # token=SPACES_LOG )
50
-
51
- # Make logging optional
52
- JSON_DATASET_PATH = "test_log.json" # TESTING: local logging setup
53
- model_config = getconfig("model_params.cfg")
54
 
55
- # # TESTING: local logging setup
56
- # class LocalScheduler:
57
- # def __init__(self, filepath):
58
- # self.filepath = Path(filepath)
59
- # self.lock = Lock()
60
-
61
- # # Create the file if it doesn't exist
62
- # if not self.filepath.exists():
63
- # with self.filepath.open('w') as f:
64
- # f.write('')
65
 
66
- # # Instead of HuggingFace CommitScheduler, use local scheduler
67
- # scheduler = LocalScheduler(JSON_DATASET_PATH) # TESTING: local logging setup
68
- # JSON_DATASET_PATH = Path(JSON_DATASET_PATH) # TESTING: local logging setup
 
69
 
70
  # the logs are written to dataset repo periodically from local logs
71
  # https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
 
 
 
 
 
 
 
72
 
73
  #####--------------- VECTOR STORE -------------------------------------------------
74
  # Configure cloud Qdrant client
@@ -126,8 +107,7 @@ def submit_feedback(feedback, logs_data):
126
  logger.error("No logs data available for feedback")
127
  return gr.update(visible=False), gr.update(visible=True)
128
 
129
- # save_logs(scheduler, JSON_DATASET_PATH, logs_data, feedback)
130
- save_logs(JSON_DATASET_PATH, logs_data, feedback)
131
  return gr.update(visible=False), gr.update(visible=True)
132
  except Exception as e:
133
  logger.error(f"Error saving feedback: {e}")
@@ -325,8 +305,7 @@ async def chat(query, history, sources, reports, subtype, year, client_ip=None,
325
 
326
  try:
327
  # Save log after streaming is complete
328
- # save_logs(scheduler, JSON_DATASET_PATH, logs_data)
329
- save_logs(JSON_DATASET_PATH, logs_data)
330
  except Exception as e:
331
  logging.error(e)
332
 
 
31
  load_dotenv()
32
 
33
  # # fetch tokens and model config params
34
+ SPACES_LOG = os.environ["SPACES_LOG"]
35
+ SPACES_LOG = os.getenv('SPACES_LOG')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ model_config = getconfig("model_params.cfg")
 
 
 
 
 
 
 
 
 
38
 
39
+ # create the local logs repo
40
+ JSON_DATASET_DIR = Path("json_dataset")
41
+ JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
42
+ JSON_DATASET_PATH = JSON_DATASET_DIR / f"logs-{uuid4()}.json"
43
 
44
  # the logs are written to dataset repo periodically from local logs
45
  # https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
46
+ scheduler = CommitScheduler(
47
+ repo_id="mtyrrell/spaces_log",
48
+ repo_type="dataset",
49
+ folder_path=JSON_DATASET_DIR,
50
+ path_in_repo=".",
51
+ token=SPACES_LOG,
52
+ every=2)
53
 
54
  #####--------------- VECTOR STORE -------------------------------------------------
55
  # Configure cloud Qdrant client
 
107
  logger.error("No logs data available for feedback")
108
  return gr.update(visible=False), gr.update(visible=True)
109
 
110
+ save_logs(scheduler, JSON_DATASET_PATH, logs_data, feedback)
 
111
  return gr.update(visible=False), gr.update(visible=True)
112
  except Exception as e:
113
  logger.error(f"Error saving feedback: {e}")
 
305
 
306
  try:
307
  # Save log after streaming is complete
308
+ save_logs(scheduler, JSON_DATASET_PATH, logs_data)
 
309
  except Exception as e:
310
  logging.error(e)
311
 
app_interactions.jsonl CHANGED
@@ -1 +1,8 @@
1
  {"session_id": "fa279ca0-b89b-474e-817b-563ac9b88ac2", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739438928.855079"}
 
 
 
 
 
 
 
 
1
  {"session_id": "fa279ca0-b89b-474e-817b-563ac9b88ac2", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739438928.855079"}
2
+ {"session_id": "e7df9e7f-b24d-4b3f-ba1f-368af70c4bae", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 4e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit report highlights several key findings, which are summarized below: **Management of Government Salary Payroll** The report notes that despite various reforms introduced to mitigate supplementary requests for additional funds to cater for wage shortfalls, there has not been significant results, and expenditure on wage is a substantial percentage of all entity budgets <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. The report also highlights payments for non-existent employees, underpayments to staff, and irregular overpayments to staff, among others <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. **Implementation of Approved Budget** The report notes that the implementation of the approved budget has not been effective, with several projects still in progress <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. **Management of Non-Current Assets** The report highlights changes in accounting treatment for non-current assets, which is essential for proper financial reporting [Docs 1 and 2]. **Implementation of Key Government Grants/Programmes** The report highlights the implementation of key government grants and programmes, including the District Rural Water Supply and Sanitation Conditional Grant, the Uganda Intergovernmental Fiscal Transfers Program, and the Education Development Grant [Docs 1 and 2]. **Implementation of Parish Development Model** The report highlights the implementation of the Parish Development Model, which is an important initiative aimed at improving service delivery at the parish level <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. Overall, the key findings of this audit report highlight several areas that require improvement, including the management of government salary payroll, the implementation of approved budgets, and the management of non-current assets. These findings are important for ensuring that local governments effectively manage their resources and deliver services to their constituents. ", "time": "1739452675.134787"}
3
+ {"session_id": "e7df9e7f-b24d-4b3f-ba1f-368af70c4bae", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 4e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit report highlights several key findings, which are summarized below: **Management of Government Salary Payroll** The report notes that despite various reforms introduced to mitigate supplementary requests for additional funds to cater for wage shortfalls, there has not been significant results, and expenditure on wage is a substantial percentage of all entity budgets <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. The report also highlights payments for non-existent employees, underpayments to staff, and irregular overpayments to staff, among others <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. **Implementation of Approved Budget** The report notes that the implementation of the approved budget has not been effective, with several projects still in progress <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. **Management of Non-Current Assets** The report highlights changes in accounting treatment for non-current assets, which is essential for proper financial reporting [Docs 1 and 2]. **Implementation of Key Government Grants/Programmes** The report highlights the implementation of key government grants and programmes, including the District Rural Water Supply and Sanitation Conditional Grant, the Uganda Intergovernmental Fiscal Transfers Program, and the Education Development Grant [Docs 1 and 2]. **Implementation of Parish Development Model** The report highlights the implementation of the Parish Development Model, which is an important initiative aimed at improving service delivery at the parish level <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. Overall, the key findings of this audit report highlight several areas that require improvement, including the management of government salary payroll, the implementation of approved budgets, and the management of non-current assets. These findings are important for ensuring that local governments effectively manage their resources and deliver services to their constituents. ", "time": "1739452675.134787", "feedback": "okay"}
4
+ {"session_id": "36194e83-cd6e-4ded-97ee-a09e3df06713", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What were the most significant areas of non-compliance in this audit?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "0 comparable ", "time": "1739453128.23646"}
5
+ {"session_id": "36194e83-cd6e-4ded-97ee-a09e3df06713", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 103.374957, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit report highlights several key findings, which are summarized below: **Management of Government Salary Payroll** The report notes that despite various reforms introduced to mitigate supplementary requests for additional funds to cater for wage shortfalls, there has not been significant results, and expenditure on wage is a substantial percentage of all entity budgets <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. The report also highlights payments for non-existent employees, underpayments to staff, and irregular overpayments to staff, among others <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. **Implementation of Approved Budget** The report notes that the implementation of the approved budget has not been effective, with several projects still in progress <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. **Management of Non-Current Assets** The report highlights changes in accounting treatment for non-current assets, which is essential for proper financial reporting [Docs 1 and 2]. **Implementation of Key Government Grants/Programmes** The report highlights the implementation of key government grants and programmes, including the District Rural Water Supply and Sanitation Conditional Grant, the Uganda Intergovernmental Fiscal Transfers Program, and the Education Development Grant [Docs 1 and 2]. **Implementation of Parish Development Model** The report highlights the implementation of the Parish Development Model, which is an important initiative aimed at improving service delivery at the parish level <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. Overall, the key findings of this audit report highlight several areas that require improvement, including the management of government salary payroll, the implementation of approved budgets, and the management of non-current assets. These findings are important for ensuring that local governments effectively manage their resources and deliver services to their constituents. ", "time": "1739453230.082439"}
6
+ {"session_id": "02fffa38-18e4-4fa1-9562-d220ca22689f", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 4e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit report highlights several key findings, which are summarized below: **Management of Government Salary Payroll** The report notes that despite various reforms introduced to mitigate supplementary requests for additional funds to cater for wage shortfalls, there has not been significant results, and expenditure on wage is a substantial percentage of all entity budgets <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. The report also highlights payments for non-existent employees, underpayments to staff, and irregular overpayments to staff, among others <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. **Implementation of Approved Budget** The report notes that the implementation of the approved budget has not been effective, with several projects still in progress <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. **Management of Non-Current Assets** The report highlights changes in accounting treatment for non-current assets, which is essential for proper financial reporting [Docs 1 and 2]. **Implementation of Key Government Grants/Programmes** The report highlights the implementation of key government grants and programmes, including the District Rural Water Supply and Sanitation Conditional Grant, the Uganda Intergovernmental Fiscal Transfers Program, and the Education Development Grant [Docs 1 and 2]. **Implementation of Parish Development Model** The report highlights the implementation of the Parish Development Model, which is an important initiative aimed at improving service delivery at the parish level <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. Overall, the key findings of this audit report highlight several areas that require improvement, including the management of government salary payroll, the implementation of approved budgets, and the management of non-current assets. These findings are important for ensuring that local governments effectively manage their resources and deliver services to their constituents. ", "time": "1739453480.730711"}
7
+ {"session_id": "d71bbb2e-fdd0-4cfb-9548-be7172e4dd92", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 4e-06, "year": ["2023"], "question": "Did this audit highlight any issues with financial management or budgeting?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "Last, Summary: https://1, for 19 and So,760Are corresponding to the 2 jsonp ", "time": "1739453555.950608"}
8
+ {"session_id": "d71bbb2e-fdd0-4cfb-9548-be7172e4dd92", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 4e-06, "year": ["2023"], "question": "Did this audit highlight any issues with financial management or budgeting?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "Last, Summary: https://1, for 19 and So,760Are corresponding to the 2 jsonp ", "time": "1739453555.950608", "feedback": "okay"}
auditqa/reader.py CHANGED
@@ -16,7 +16,7 @@ logger = logging.getLogger(__name__)
16
  model_config = getconfig("model_params.cfg")
17
  # NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"]
18
  # HF_token = os.environ["LLAMA_3_1"]
19
- HF_token = os.getenv('LLAMA_3_1') # TESTING
20
 
21
  def nvidia_client():
22
  logger.info("NVIDIA client activated")
 
16
  model_config = getconfig("model_params.cfg")
17
  # NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"]
18
  # HF_token = os.environ["LLAMA_3_1"]
19
+ # HF_token = os.getenv('LLAMA_3_1') # TESTING
20
 
21
  def nvidia_client():
22
  logger.info("NVIDIA client activated")
auditqa/utils.py CHANGED
@@ -9,63 +9,34 @@ import requests
9
  from datetime import datetime
10
  from uuid import uuid4
11
 
 
12
  # TESTING DEBUG LOG
13
  from auditqa.logging_config import setup_logging
14
  setup_logging()
15
  import logging
16
  logger = logging.getLogger(__name__)
17
- logger.setLevel(logging.DEBUG) # Ensure debug logging is enabled
18
-
19
-
20
- # def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
21
- # """ Every interaction with app saves the log of question and answer,
22
- # this is to get the usage statistics of app and evaluate model performances.
23
- # Also saves user feedback (when provided).
24
- # """
25
- # if feedback:
26
- # logs["feedback"] = feedback #optional
27
-
28
- # with scheduler.lock:
29
- # with open(JSON_DATASET_PATH, 'a') as f:
30
- # json.dump(logs, f)
31
- # f.write("\n")
32
- # print("logging done")
33
-
34
 
35
- import os
36
- from pathlib import Path
37
 
38
- def save_logs(JSON_DATASET_PATH: str, logs: dict, feedback: str = None) -> None:
39
  """ Every interaction with app saves the log of question and answer,
40
  this is to get the usage statistics of app and evaluate model performances.
41
  Also saves user feedback (when provided).
42
  """
43
  try:
44
- # Debug logging to verify path
45
- logger.debug(f"Attempting to save logs to path: '{JSON_DATASET_PATH}'")
46
-
47
- # Validate path
48
- if not JSON_DATASET_PATH:
49
- raise ValueError("JSON_DATASET_PATH cannot be empty")
50
-
51
- # Create directory if it doesn't exist (using the current directory if no path specified)
52
- path = Path(JSON_DATASET_PATH)
53
- if str(path.parent) != '.':
54
- path.parent.mkdir(parents=True, exist_ok=True)
55
-
56
  if feedback:
57
- logs["feedback"] = feedback
58
- logging.debug(f"Adding feedback to logs: {feedback}")
59
 
60
- with open(path, 'a') as f:
61
- json.dump(logs, f)
62
- f.write("\n")
63
- logger.info(f"Successfully saved logs to {path}")
 
64
  except Exception as e:
65
  logger.error(f"Failed to save logs to {JSON_DATASET_PATH}: {str(e)}")
66
  raise
67
 
68
 
 
69
  def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
70
  if type == 'NVIDIA':
71
  messages = [{"role": "system", "content": SYSTEM_PROMPT},
 
9
  from datetime import datetime
10
  from uuid import uuid4
11
 
12
+
13
  # TESTING DEBUG LOG
14
  from auditqa.logging_config import setup_logging
15
  setup_logging()
16
  import logging
17
  logger = logging.getLogger(__name__)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
 
 
19
 
20
+ def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
21
  """ Every interaction with app saves the log of question and answer,
22
  this is to get the usage statistics of app and evaluate model performances.
23
  Also saves user feedback (when provided).
24
  """
25
  try:
 
 
 
 
 
 
 
 
 
 
 
 
26
  if feedback:
27
+ logs["feedback"] = feedback #optional
 
28
 
29
+ with scheduler.lock:
30
+ with open(JSON_DATASET_PATH, 'a') as f:
31
+ json.dump(logs, f)
32
+ f.write("\n")
33
+ logger.info("logging done")
34
  except Exception as e:
35
  logger.error(f"Failed to save logs to {JSON_DATASET_PATH}: {str(e)}")
36
  raise
37
 
38
 
39
+
40
  def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
41
  if type == 'NVIDIA':
42
  messages = [{"role": "system", "content": SYSTEM_PROMPT},
logs/app.log CHANGED
@@ -1258,3 +1258,112 @@ Make sure your token has the correct permissions.
1258
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless endpoint activated
1259
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1260
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless endpoint activated
1259
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1260
  2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1261
+ 2025-02-13 13:17:13,057 - __main__ - INFO - App launched
1262
+ 2025-02-13 13:17:25,747 - datasets - INFO - PyTorch version 2.4.0 available.
1263
+ 2025-02-13 13:17:25,846 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: BAAI/bge-large-en-v1.5
1264
+ 2025-02-13 13:17:28,233 - httpx - INFO - HTTP Request: GET https://checkip.amazonaws.com/ "HTTP/1.1 200 "
1265
+ 2025-02-13 13:17:28,236 - httpx - INFO - HTTP Request: GET http://127.0.0.1:7861/startup-events "HTTP/1.1 200 OK"
1266
+ 2025-02-13 13:17:28,247 - httpx - INFO - HTTP Request: HEAD http://127.0.0.1:7861/ "HTTP/1.1 200 OK"
1267
+ 2025-02-13 13:17:28,801 - httpx - INFO - HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"
1268
+ 2025-02-13 13:17:41,050 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
1269
+ 2025-02-13 13:17:41,054 - __main__ - DEBUG - Client IP: 127.0.0.1
1270
+ 2025-02-13 13:17:41,055 - __main__ - DEBUG - Session ID: None
1271
+ 2025-02-13 13:17:41,378 - __main__ - DEBUG - Created new session: e7df9e7f-b24d-4b3f-ba1f-368af70c4bae
1272
+ 2025-02-13 13:17:41,378 - __main__ - DEBUG - Session duration: 4e-06
1273
+ 2025-02-13 13:17:41,379 - auditqa.retriever - INFO - Retriever activated
1274
+ 2025-02-13 13:17:42,963 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1275
+ 2025-02-13 13:17:46,569 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1276
+ 2025-02-13 13:17:54,937 - auditqa.retriever - INFO - retrieved paragraphs:3
1277
+ 2025-02-13 13:17:55,134 - auditqa.reader - INFO - Serverless endpoint activated
1278
+ 2025-02-13 13:17:55,135 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1279
+ 2025-02-13 13:17:55,135 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1280
+ 2025-02-13 13:25:20,803 - __main__ - DEBUG - Chat function called with query: What were the most significant areas of non-compliance in this audit?
1281
+ 2025-02-13 13:25:20,804 - __main__ - DEBUG - Client IP: 127.0.0.1
1282
+ 2025-02-13 13:25:20,805 - __main__ - DEBUG - Session ID: None
1283
+ 2025-02-13 13:25:21,132 - __main__ - DEBUG - Created new session: 36194e83-cd6e-4ded-97ee-a09e3df06713
1284
+ 2025-02-13 13:25:21,132 - __main__ - DEBUG - Session duration: 3e-06
1285
+ 2025-02-13 13:25:21,133 - auditqa.retriever - INFO - Retriever activated
1286
+ 2025-02-13 13:25:22,284 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1287
+ 2025-02-13 13:25:25,299 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1288
+ 2025-02-13 13:25:28,041 - auditqa.retriever - INFO - retrieved paragraphs:3
1289
+ 2025-02-13 13:25:28,236 - auditqa.reader - INFO - Serverless endpoint activated
1290
+ 2025-02-13 13:25:28,236 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1291
+ 2025-02-13 13:25:28,236 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1292
+ 2025-02-13 13:27:04,178 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
1293
+ 2025-02-13 13:27:04,180 - __main__ - DEBUG - Client IP: 127.0.0.1
1294
+ 2025-02-13 13:27:04,180 - __main__ - DEBUG - Session ID: 36194e83-cd6e-4ded-97ee-a09e3df06713
1295
+ 2025-02-13 13:27:04,180 - __main__ - DEBUG - Updated existing session: 36194e83-cd6e-4ded-97ee-a09e3df06713
1296
+ 2025-02-13 13:27:04,180 - __main__ - DEBUG - Session duration: 103.374957
1297
+ 2025-02-13 13:27:04,181 - auditqa.retriever - INFO - Retriever activated
1298
+ 2025-02-13 13:27:05,440 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1299
+ 2025-02-13 13:27:07,465 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1300
+ 2025-02-13 13:27:09,928 - auditqa.retriever - INFO - retrieved paragraphs:3
1301
+ 2025-02-13 13:27:10,082 - auditqa.reader - INFO - Serverless endpoint activated
1302
+ 2025-02-13 13:27:10,082 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1303
+ 2025-02-13 13:27:10,082 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1304
+ 2025-02-13 13:30:35,153 - __main__ - INFO - App launched
1305
+ 2025-02-13 13:30:43,141 - datasets - INFO - PyTorch version 2.4.0 available.
1306
+ 2025-02-13 13:30:43,252 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: BAAI/bge-large-en-v1.5
1307
+ 2025-02-13 13:30:45,039 - httpx - INFO - HTTP Request: GET https://checkip.amazonaws.com/ "HTTP/1.1 200 "
1308
+ 2025-02-13 13:30:45,075 - httpx - INFO - HTTP Request: GET http://127.0.0.1:7861/startup-events "HTTP/1.1 200 OK"
1309
+ 2025-02-13 13:30:45,088 - httpx - INFO - HTTP Request: HEAD http://127.0.0.1:7861/ "HTTP/1.1 200 OK"
1310
+ 2025-02-13 13:30:45,644 - httpx - INFO - HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"
1311
+ 2025-02-13 13:31:13,135 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
1312
+ 2025-02-13 13:31:13,137 - __main__ - DEBUG - Client IP: 127.0.0.1
1313
+ 2025-02-13 13:31:13,137 - __main__ - DEBUG - Session ID: None
1314
+ 2025-02-13 13:31:13,429 - __main__ - DEBUG - Created new session: 02fffa38-18e4-4fa1-9562-d220ca22689f
1315
+ 2025-02-13 13:31:13,430 - __main__ - DEBUG - Session duration: 4e-06
1316
+ 2025-02-13 13:31:13,432 - auditqa.retriever - INFO - Retriever activated
1317
+ 2025-02-13 13:31:14,595 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1318
+ 2025-02-13 13:31:18,041 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1319
+ 2025-02-13 13:31:20,460 - auditqa.retriever - INFO - retrieved paragraphs:3
1320
+ 2025-02-13 13:31:20,730 - auditqa.reader - INFO - Serverless endpoint activated
1321
+ 2025-02-13 13:31:20,731 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1322
+ 2025-02-13 13:31:20,731 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1323
+ 2025-02-13 13:32:29,628 - __main__ - DEBUG - Chat function called with query: Did this audit highlight any issues with financial management or budgeting?
1324
+ 2025-02-13 13:32:29,628 - __main__ - DEBUG - Client IP: 127.0.0.1
1325
+ 2025-02-13 13:32:29,629 - __main__ - DEBUG - Session ID: None
1326
+ 2025-02-13 13:32:29,951 - __main__ - DEBUG - Created new session: d71bbb2e-fdd0-4cfb-9548-be7172e4dd92
1327
+ 2025-02-13 13:32:29,952 - __main__ - DEBUG - Session duration: 4e-06
1328
+ 2025-02-13 13:32:29,953 - auditqa.retriever - INFO - Retriever activated
1329
+ 2025-02-13 13:32:31,023 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1330
+ 2025-02-13 13:32:33,388 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1331
+ 2025-02-13 13:32:35,776 - auditqa.retriever - INFO - retrieved paragraphs:3
1332
+ 2025-02-13 13:32:35,950 - auditqa.reader - INFO - Serverless endpoint activated
1333
+ 2025-02-13 13:32:35,950 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1334
+ 2025-02-13 13:32:35,950 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1335
+ 2025-02-13 13:38:04,160 - __main__ - INFO - App launched
1336
+ 2025-02-13 13:38:47,642 - datasets - INFO - PyTorch version 2.4.0 available.
1337
+ 2025-02-13 13:38:47,747 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: BAAI/bge-large-en-v1.5
1338
+ 2025-02-13 13:38:49,468 - httpx - INFO - HTTP Request: GET https://checkip.amazonaws.com/ "HTTP/1.1 200 "
1339
+ 2025-02-13 13:38:49,487 - httpx - INFO - HTTP Request: GET http://127.0.0.1:7860/startup-events "HTTP/1.1 200 OK"
1340
+ 2025-02-13 13:38:49,499 - httpx - INFO - HTTP Request: HEAD http://127.0.0.1:7860/ "HTTP/1.1 200 OK"
1341
+ 2025-02-13 13:38:50,052 - httpx - INFO - HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"
1342
+ 2025-02-13 13:38:57,260 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
1343
+ 2025-02-13 13:38:57,261 - __main__ - DEBUG - Client IP: 127.0.0.1
1344
+ 2025-02-13 13:38:57,261 - __main__ - DEBUG - Session ID: None
1345
+ 2025-02-13 13:38:57,554 - __main__ - DEBUG - Created new session: d1474d8d-fbb3-4ee2-a5f7-1072a7988e19
1346
+ 2025-02-13 13:38:57,554 - __main__ - DEBUG - Session duration: 2e-06
1347
+ 2025-02-13 13:38:57,554 - auditqa.retriever - INFO - Retriever activated
1348
+ 2025-02-13 13:38:58,659 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1349
+ 2025-02-13 13:39:01,094 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1350
+ 2025-02-13 13:39:03,167 - auditqa.retriever - INFO - retrieved paragraphs:3
1351
+ 2025-02-13 13:39:03,336 - auditqa.reader - INFO - Serverless endpoint activated
1352
+ 2025-02-13 13:39:03,336 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1353
+ 2025-02-13 13:39:03,336 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1354
+ 2025-02-13 13:39:17,031 - auditqa.utils - INFO - logging done
1355
+ 2025-02-13 13:39:20,010 - auditqa.utils - INFO - logging done
1356
+ 2025-02-13 13:39:37,524 - __main__ - DEBUG - Chat function called with query: Were there any procurement or contract management concerns raised in this audit?
1357
+ 2025-02-13 13:39:37,525 - __main__ - DEBUG - Client IP: 127.0.0.1
1358
+ 2025-02-13 13:39:37,526 - __main__ - DEBUG - Session ID: d1474d8d-fbb3-4ee2-a5f7-1072a7988e19
1359
+ 2025-02-13 13:39:37,526 - __main__ - DEBUG - Updated existing session: d1474d8d-fbb3-4ee2-a5f7-1072a7988e19
1360
+ 2025-02-13 13:39:37,526 - __main__ - DEBUG - Session duration: 40.264755
1361
+ 2025-02-13 13:39:37,528 - auditqa.retriever - INFO - Retriever activated
1362
+ 2025-02-13 13:39:38,620 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
1363
+ 2025-02-13 13:39:41,124 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
1364
+ 2025-02-13 13:39:43,955 - auditqa.retriever - INFO - retrieved paragraphs:3
1365
+ 2025-02-13 13:39:44,129 - auditqa.reader - INFO - Serverless endpoint activated
1366
+ 2025-02-13 13:39:44,129 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
1367
+ 2025-02-13 13:39:44,129 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
1368
+ 2025-02-13 13:40:00,385 - auditqa.utils - INFO - logging done
1369
+ 2025-02-13 13:40:05,605 - auditqa.utils - INFO - logging done