Spaces:
Runtime error
Runtime error
log debug
Browse files- app.py +15 -15
- app_interactions.jsonl +1 -4
- auditqa/utils.py +8 -17
- logs/app.log +37 -0
app.py
CHANGED
@@ -49,23 +49,23 @@ load_dotenv()
|
|
49 |
# token=SPACES_LOG )
|
50 |
|
51 |
# Make logging optional
|
52 |
-
|
53 |
model_config = getconfig("model_params.cfg")
|
54 |
|
55 |
-
# TESTING: local logging setup
|
56 |
-
class LocalScheduler:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
# Instead of HuggingFace CommitScheduler, use local scheduler
|
67 |
-
scheduler = LocalScheduler(
|
68 |
-
JSON_DATASET_PATH = Path(
|
69 |
|
70 |
# the logs are written to dataset repo periodically from local logs
|
71 |
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
|
@@ -549,13 +549,13 @@ with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-
|
|
549 |
"""Handle 'okay' feedback submission"""
|
550 |
ip = logs_data.get('client_ip', 'No IP found')
|
551 |
location = logs_data.get('client_location', 'No location found')
|
552 |
-
return submit_feedback("okay", logs_data) + (gr.update(visible=True, value=f"
|
553 |
|
554 |
def submit_feedback_not_okay(logs_data):
|
555 |
"""Handle 'not okay' feedback submission"""
|
556 |
ip = logs_data.get('client_ip', 'No IP found')
|
557 |
location = logs_data.get('client_location', 'No location found')
|
558 |
-
return submit_feedback("not_okay", logs_data) + (gr.update(visible=True, value=f"
|
559 |
|
560 |
okay_btn.click(
|
561 |
submit_feedback_okay,
|
|
|
49 |
# token=SPACES_LOG )
|
50 |
|
51 |
# Make logging optional
|
52 |
+
JSON_DATASET_PATH = "app_interactions.jsonl" # TESTING: local logging setup
|
53 |
model_config = getconfig("model_params.cfg")
|
54 |
|
55 |
+
# # TESTING: local logging setup
|
56 |
+
# class LocalScheduler:
|
57 |
+
# def __init__(self, filepath):
|
58 |
+
# self.filepath = Path(filepath)
|
59 |
+
# self.lock = Lock()
|
60 |
|
61 |
+
# # Create the file if it doesn't exist
|
62 |
+
# if not self.filepath.exists():
|
63 |
+
# with self.filepath.open('w') as f:
|
64 |
+
# f.write('')
|
65 |
|
66 |
+
# # Instead of HuggingFace CommitScheduler, use local scheduler
|
67 |
+
# scheduler = LocalScheduler(JSON_DATASET_PATH) # TESTING: local logging setup
|
68 |
+
# JSON_DATASET_PATH = Path(JSON_DATASET_PATH) # TESTING: local logging setup
|
69 |
|
70 |
# the logs are written to dataset repo periodically from local logs
|
71 |
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
|
|
|
549 |
"""Handle 'okay' feedback submission"""
|
550 |
ip = logs_data.get('client_ip', 'No IP found')
|
551 |
location = logs_data.get('client_location', 'No location found')
|
552 |
+
return submit_feedback("okay", logs_data) + (gr.update(visible=True, value=f"TESTING - Client IP: {ip}, Location: {location}"),)
|
553 |
|
554 |
def submit_feedback_not_okay(logs_data):
|
555 |
"""Handle 'not okay' feedback submission"""
|
556 |
ip = logs_data.get('client_ip', 'No IP found')
|
557 |
location = logs_data.get('client_location', 'No location found')
|
558 |
+
return submit_feedback("not_okay", logs_data) + (gr.update(visible=True, value=f"TESTING - Client IP: {ip}, Location: {location}"),)
|
559 |
|
560 |
okay_btn.click(
|
561 |
submit_feedback_okay,
|
app_interactions.jsonl
CHANGED
@@ -1,4 +1 @@
|
|
1 |
-
{"session_id": "
|
2 |
-
{"session_id": "6b4e8dba-4839-4d6b-b1b4-2a45224a5a18", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739433242.166489", "feedback": "okay"}
|
3 |
-
{"session_id": "cf8aac12-a43a-4098-8868-e5f5b113426f", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739434342.056213"}
|
4 |
-
{"session_id": "cf8aac12-a43a-4098-8868-e5f5b113426f", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739434342.056213", "feedback": "okay"}
|
|
|
1 |
+
{"session_id": "fa279ca0-b89b-474e-817b-563ac9b88ac2", "client_ip": "127.0.0.1", "client_location": {"city": null, "region": null, "country": null, "latitude": null, "longitude": null}, "session_duration_seconds": 3e-06, "year": ["2023"], "question": "What are the key findings of this audit report?", "retriever": "BAAI/bge-large-en-v1.5", "endpoint_type": "DEDICATED", "reader": "meta-llama/Llama-3.1-8B-Instruct", "answer": "The audit reports provided cover the financial statements of Kifamba District Local Government and Buhweju District Local Government for the year ended 30th June 2023. The key findings from these reports are: 1. Management of Government Salary Payroll: * The Minister of Finance, Planning and Economic Development highlighted that expenditure on wage is a substantial percentage of all entity budgets, but significant results have not been achieved despite reforms <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. * A special audit on wage payroll in Local Government entities was carried out to establish the root causes of delays in salary payments and propose remedial measures. The audit covered four FYs from 2019/2020 to 2022/2023, and a separate detailed audit report was issued <a href=\"#doc1\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>1</sup></span></a>. 2. Implementation of Budget: * The Auditor General's report for Kifamba District Local Government found that the implementation of the approved budget was partially implemented, with some projects still ongoing <a href=\"#doc2\" class=\"a-doc-ref\" target=\"_self\"><span class='doc-ref'><sup>2</sup></span></a>. 3 Despite the Codeua ", "time": "1739438928.855079"}
|
|
|
|
|
|
auditqa/utils.py
CHANGED
@@ -17,23 +17,14 @@ def save_logs(scheduler, JSON_DATASET_PATH, logs, feedback=None) -> None:
|
|
17 |
this is to get the usage statistics of app and evaluate model performances.
|
18 |
Also saves user feedback (when provided).
|
19 |
"""
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
with JSON_DATASET_PATH.open("a") as f:
|
29 |
-
json.dump(logs, f)
|
30 |
-
f.write("\n")
|
31 |
-
logging.info("Logging completed successfully")
|
32 |
-
except Exception as e:
|
33 |
-
logging.error(f"Failed to save logs: {str(e)}")
|
34 |
-
print(f"Error saving logs: {str(e)}")
|
35 |
-
|
36 |
-
|
37 |
|
38 |
def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
|
39 |
if type == 'NVIDIA':
|
|
|
17 |
this is to get the usage statistics of app and evaluate model performances.
|
18 |
Also saves user feedback (when provided).
|
19 |
"""
|
20 |
+
if feedback:
|
21 |
+
logs["feedback"] = feedback #optional
|
22 |
+
|
23 |
+
with scheduler.lock:
|
24 |
+
with open(JSON_DATASET_PATH, 'a') as f:
|
25 |
+
json.dump(logs, f)
|
26 |
+
f.write("\n")
|
27 |
+
print("logging done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
|
30 |
if type == 'NVIDIA':
|
logs/app.log
CHANGED
@@ -1221,3 +1221,40 @@ Make sure your token has the correct permissions.
|
|
1221 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Serverless endpoint activated
|
1222 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
|
1223 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1221 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Serverless endpoint activated
|
1222 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
|
1223 |
2025-02-13 08:12:22,056 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
|
1224 |
+
2025-02-13 09:21:30,180 - datasets - INFO - PyTorch version 2.4.0 available.
|
1225 |
+
2025-02-13 09:21:30,295 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: BAAI/bge-large-en-v1.5
|
1226 |
+
2025-02-13 09:21:32,193 - httpx - INFO - HTTP Request: GET https://checkip.amazonaws.com/ "HTTP/1.1 200 "
|
1227 |
+
2025-02-13 09:21:32,198 - httpx - INFO - HTTP Request: GET http://127.0.0.1:7861/startup-events "HTTP/1.1 200 OK"
|
1228 |
+
2025-02-13 09:21:32,211 - httpx - INFO - HTTP Request: HEAD http://127.0.0.1:7861/ "HTTP/1.1 200 OK"
|
1229 |
+
2025-02-13 09:21:32,760 - httpx - INFO - HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"
|
1230 |
+
2025-02-13 09:23:52,792 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
|
1231 |
+
2025-02-13 09:23:52,793 - __main__ - DEBUG - Client IP: 127.0.0.1
|
1232 |
+
2025-02-13 09:23:52,794 - __main__ - DEBUG - Session ID: None
|
1233 |
+
2025-02-13 09:23:53,108 - __main__ - DEBUG - Created new session: c2e134ad-28d4-4e6b-8fd0-5de3d826ac16
|
1234 |
+
2025-02-13 09:23:53,110 - __main__ - DEBUG - Session duration: 3e-06
|
1235 |
+
2025-02-13 09:23:53,111 - auditqa.retriever - INFO - Retriever activated
|
1236 |
+
2025-02-13 09:23:54,568 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
|
1237 |
+
2025-02-13 09:23:57,180 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
|
1238 |
+
2025-02-13 09:24:04,903 - auditqa.retriever - INFO - retrieved paragraphs:3
|
1239 |
+
2025-02-13 09:24:05,120 - auditqa.reader - INFO - Serverless endpoint activated
|
1240 |
+
2025-02-13 09:24:05,120 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
|
1241 |
+
2025-02-13 09:24:05,120 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
|
1242 |
+
2025-02-13 09:28:28,531 - __main__ - INFO - App launched
|
1243 |
+
2025-02-13 09:28:35,576 - datasets - INFO - PyTorch version 2.4.0 available.
|
1244 |
+
2025-02-13 09:28:35,688 - sentence_transformers.SentenceTransformer - INFO - Load pretrained SentenceTransformer: BAAI/bge-large-en-v1.5
|
1245 |
+
2025-02-13 09:28:37,625 - httpx - INFO - HTTP Request: GET https://checkip.amazonaws.com/ "HTTP/1.1 200 "
|
1246 |
+
2025-02-13 09:28:37,646 - httpx - INFO - HTTP Request: GET http://127.0.0.1:7861/startup-events "HTTP/1.1 200 OK"
|
1247 |
+
2025-02-13 09:28:37,658 - httpx - INFO - HTTP Request: HEAD http://127.0.0.1:7861/ "HTTP/1.1 200 OK"
|
1248 |
+
2025-02-13 09:28:38,210 - httpx - INFO - HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"
|
1249 |
+
2025-02-13 09:28:42,069 - __main__ - DEBUG - Chat function called with query: What are the key findings of this audit report?
|
1250 |
+
2025-02-13 09:28:42,070 - __main__ - DEBUG - Client IP: 127.0.0.1
|
1251 |
+
2025-02-13 09:28:42,070 - __main__ - DEBUG - Session ID: None
|
1252 |
+
2025-02-13 09:28:42,392 - __main__ - DEBUG - Created new session: fa279ca0-b89b-474e-817b-563ac9b88ac2
|
1253 |
+
2025-02-13 09:28:42,393 - __main__ - DEBUG - Session duration: 3e-06
|
1254 |
+
2025-02-13 09:28:42,394 - auditqa.retriever - INFO - Retriever activated
|
1255 |
+
2025-02-13 09:28:43,661 - sentence_transformers.cross_encoder.CrossEncoder - INFO - Use pytorch device: mps
|
1256 |
+
2025-02-13 09:28:46,213 - httpx - INFO - HTTP Request: POST https://ff3f0448-0a00-470e-9956-49efa3071db3.europe-west3-0.gcp.cloud.qdrant.io:6333/collections/allreports/points/search "HTTP/1.1 200 OK"
|
1257 |
+
2025-02-13 09:28:48,688 - auditqa.retriever - INFO - retrieved paragraphs:3
|
1258 |
+
2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless endpoint activated
|
1259 |
+
2025-02-13 09:28:48,855 - auditqa.reader - INFO - Initializing InferenceClient with model: meta-llama/Meta-Llama-3-8B-Instruct
|
1260 |
+
2025-02-13 09:28:48,855 - auditqa.reader - INFO - Serverless InferenceClient initialization successful
|