""" app.py This Gradio app loads your fine-tuned model and serves as a therapeutic chatbot named "Serenity". It uses a system prompt to steer the conversation in a supportive, open-ended manner. """ import gradio as gr import torch from transformers import TextStreamer from unsloth import FastLanguageModel # --------------------------- # 1. Load your fine-tuned model # --------------------------- max_seq_length = 2048 # adjust as needed load_in_4bit = True # set to True if you used 4-bit quantization dtype = None # auto-detect dtype # Replace with your actual model repository on Hugging Face Hub model_name = "YOUR_USERNAME/YOUR_MODEL_REPO" model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name, max_seq_length=max_seq_length, load_in_4bit=load_in_4bit, dtype=dtype, ) FastLanguageModel.for_inference(model) # --------------------------- # 2. Define the therapeutic system prompt # --------------------------- therapy_system_prompt = """ You are "Serenity", a compassionate, supportive, and curious Therapist. Your role is to: 1. **Validate First**: Start by validating emotions. 2. **Explore Gently**: Always ask open-ended questions using "What" or "How". 3. **Encourage Elaboration**: Make sure to ask for more details. 4. **Avoid Closure**: Never end with statements - always end with a question. 5. **Support Safety**: If serious issues emerge, support them as best as possible and validate their feelings. """ # --------------------------- # 3. Define the response generation function # --------------------------- def respond(message, chat_history): """ Generates a therapeutic response given a new user message and the conversation history. Parameters: message (str): The latest message from the user. chat_history (list): List of (user_message, assistant_response) tuples. Returns: A tuple with an empty string (clearing the input) and the updated chat history. """ # Always include the system prompt at the beginning messages = [{"role": "system", "content": therapy_system_prompt}] # Append conversation history for user_msg, bot_resp in chat_history: messages.extend([ {"role": "user", "content": user_msg}, {"role": "assistant", "content": bot_resp} ]) # Append the new user message messages.append({"role": "user", "content": message}) # Tokenize with therapeutic context inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to("cuda") # Generate the response outputs = model.generate( input_ids=inputs, max_new_tokens=256, temperature=0.85, repetition_penalty=1.2, top_p=0.90, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) # Process response: # Decode the output and extract the assistant's reply. full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) # The split strategy here might need adjustment depending on your template; # we assume the assistant reply is after the last occurrence of "assistant" therapy_response = full_response.split("assistant")[-1].strip() # Update chat history chat_history.append((message, therapy_response)) return "", chat_history # --------------------------- # 4. Build the Gradio Interface # --------------------------- with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo: gr.Markdown(""" # 🌿 Serenity - AI Therapist *A safe space for emotional support and reflection* """) # The chatbot component displays the conversation chatbot = gr.Chatbot(height=450, avatar_images=("user.png", "therapist.png")) msg = gr.Textbox(label="Share your feelings", placeholder="Type your message...") with gr.Row(): submit_btn = gr.Button("Send", variant="primary") clear_btn = gr.Button("Clear History") # State to hold chat history as list of (user, assistant) tuples chat_state = gr.State([]) # Interaction handlers: # When the user submits a message, generate a response and update the history. submit_btn.click( respond, [msg, chat_state], [msg, chatbot], queue=False ) msg.submit( respond, [msg, chat_state], [msg, chatbot], queue=False ) # Clear chat history handler clear_btn.click( lambda: [], None, chat_state, queue=False ).then( lambda: None, None, chatbot, queue=False ) # --------------------------- # 5. Launch the app # --------------------------- demo.launch(debug=False, share=True)