Spaces:
Runtime error
Runtime error
""" | |
app.py | |
This Gradio app loads your fine-tuned model and serves as a therapeutic chatbot named "Serenity". | |
It uses a system prompt to steer the conversation in a supportive, open-ended manner. | |
""" | |
import gradio as gr | |
import torch | |
from transformers import TextStreamer | |
from unsloth import FastLanguageModel | |
# --------------------------- | |
# 1. Load your fine-tuned model | |
# --------------------------- | |
max_seq_length = 2048 # adjust as needed | |
load_in_4bit = True # set to True if you used 4-bit quantization | |
dtype = None # auto-detect dtype | |
# Replace with your actual model repository on Hugging Face Hub | |
model_name = "YOUR_USERNAME/YOUR_MODEL_REPO" | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name, | |
max_seq_length=max_seq_length, | |
load_in_4bit=load_in_4bit, | |
dtype=dtype, | |
) | |
FastLanguageModel.for_inference(model) | |
# --------------------------- | |
# 2. Define the therapeutic system prompt | |
# --------------------------- | |
therapy_system_prompt = """ | |
You are "Serenity", a compassionate, supportive, and curious Therapist. Your role is to: | |
1. **Validate First**: Start by validating emotions. | |
2. **Explore Gently**: Always ask open-ended questions using "What" or "How". | |
3. **Encourage Elaboration**: Make sure to ask for more details. | |
4. **Avoid Closure**: Never end with statements - always end with a question. | |
5. **Support Safety**: If serious issues emerge, support them as best as possible and validate their feelings. | |
""" | |
# --------------------------- | |
# 3. Define the response generation function | |
# --------------------------- | |
def respond(message, chat_history): | |
""" | |
Generates a therapeutic response given a new user message and the conversation history. | |
Parameters: | |
message (str): The latest message from the user. | |
chat_history (list): List of (user_message, assistant_response) tuples. | |
Returns: | |
A tuple with an empty string (clearing the input) and the updated chat history. | |
""" | |
# Always include the system prompt at the beginning | |
messages = [{"role": "system", "content": therapy_system_prompt}] | |
# Append conversation history | |
for user_msg, bot_resp in chat_history: | |
messages.extend([ | |
{"role": "user", "content": user_msg}, | |
{"role": "assistant", "content": bot_resp} | |
]) | |
# Append the new user message | |
messages.append({"role": "user", "content": message}) | |
# Tokenize with therapeutic context | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda") | |
# Generate the response | |
outputs = model.generate( | |
input_ids=inputs, | |
max_new_tokens=256, | |
temperature=0.85, | |
repetition_penalty=1.2, | |
top_p=0.90, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Process response: | |
# Decode the output and extract the assistant's reply. | |
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# The split strategy here might need adjustment depending on your template; | |
# we assume the assistant reply is after the last occurrence of "assistant" | |
therapy_response = full_response.split("assistant")[-1].strip() | |
# Update chat history | |
chat_history.append((message, therapy_response)) | |
return "", chat_history | |
# --------------------------- | |
# 4. Build the Gradio Interface | |
# --------------------------- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo: | |
gr.Markdown(""" | |
# ๐ฟ Serenity - AI Therapist | |
*A safe space for emotional support and reflection* | |
""") | |
# The chatbot component displays the conversation | |
chatbot = gr.Chatbot(height=450, avatar_images=("user.png", "therapist.png")) | |
msg = gr.Textbox(label="Share your feelings", placeholder="Type your message...") | |
with gr.Row(): | |
submit_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear History") | |
# State to hold chat history as list of (user, assistant) tuples | |
chat_state = gr.State([]) | |
# Interaction handlers: | |
# When the user submits a message, generate a response and update the history. | |
submit_btn.click( | |
respond, | |
[msg, chat_state], | |
[msg, chatbot], | |
queue=False | |
) | |
msg.submit( | |
respond, | |
[msg, chat_state], | |
[msg, chatbot], | |
queue=False | |
) | |
# Clear chat history handler | |
clear_btn.click( | |
lambda: [], None, chat_state, queue=False | |
).then( | |
lambda: None, None, chatbot, queue=False | |
) | |
# --------------------------- | |
# 5. Launch the app | |
# --------------------------- | |
demo.launch(debug=False, share=True) | |