File size: 2,708 Bytes
de07127
 
50f4595
4afec78
b4725a8
decc59e
3bef3fb
664eb76
0b5b7f4
8a965da
a2384ba
8a965da
3b57b43
3826e01
973bb39
62ac43e
b494685
47fa28f
 
779414c
 
 
c6f6c1f
3bef3fb
db75012
3ce5824
2ec9293
 
 
 
 
 
 
 
 
 
 
 
 
c6f6c1f
e305646
66476bb
5475a7a
79dce08
75a25c7
3bef3fb
 
c3e8c6d
47fa28f
3bef3fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e8c6d
3bef3fb
75a25c7
 
 
 
 
 
 
3bef3fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os 
import sys 
os.system("pip install transformers==4.27.0")
os.system("pip install numpy==1.23")
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor, AutoProcessor, WhisperConfig
os.system("pip install jiwer")
from jiwer import wer
os.system("pip install datasets[audio]")
from evaluate import evaluator
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled
import gradio as gr

set_caching_enabled(False)
disable_caching()

huggingface_token = os.environ["huggingface_token"]
pipe = pipeline(model="mskov/whisper-small-esc50") 
print(pipe)
'''
model = WhisperModel.from_pretrained("mskov/whisper-small-miso", use_auth_token=huggingface_token)
feature_extractor = AutoFeatureExtractor.from_pretrained("mskov/whisper-small-miso", use_auth_token=huggingface_token)
miso_tokenizer = WhisperTokenizer.from_pretrained("mskov/whisper-small-miso", use_auth_token=huggingface_token)
'''
dataset = load_dataset("mskov/miso_test", split="test").cast_column("audio", Audio(sampling_rate=16000))

print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title="Whisper Small Miso Test",
)

iface.launch()
'''
inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
print("inputs ::: ", inputs, "and dataset type for good measure: ", type(dataset))
tempDataset = dataset[0]["audio"]["array"].tostring()
tokenized_dataset = miso_tokenizer(tempDataset)  # Tokenize the dataset

input_ids = features.input_ids
attention_mask = features.attention_mask
'''
'''
# Evaluate the model
model.eval()
with torch.no_grad():
    outputs = model(input_ids=input_ids, attention_mask=attention_mask)

# Convert predicted token IDs back to text
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)

# Get ground truth labels from the dataset
labels = dataset["audio"]  # Replace "labels" with the appropriate key in your dataset

# Compute WER
wer_score = wer(labels, predicted_text)

# Print or return WER score
print(f"Word Error Rate (WER): {wer_score}")
'''
'''
print("check check")
print(inputs)
input_features = inputs.input_features
decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
list(last_hidden_state.shape)
print(list(last_hidden_state.shape))
'''