Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -65,7 +65,7 @@ def slider_logic(slider):
|
|
65 |
return threshold
|
66 |
|
67 |
# Create a Gradio interface with audio file and text inputs
|
68 |
-
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider):
|
69 |
# Transcribe the audio file using Whisper ASR
|
70 |
if audio_file != None:
|
71 |
transcribed_text = pipe(audio_file)["text"]
|
@@ -114,7 +114,7 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
114 |
|
115 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
116 |
if toxicity_score > threshold:
|
117 |
-
print("threshold exceeded!!")
|
118 |
|
119 |
return toxicity_score, classification_output, transcribed_text
|
120 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
@@ -150,7 +150,8 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
150 |
average_logprobs -= internal_lm_average_logprobs
|
151 |
scores = average_logprobs.softmax(-1).tolist()
|
152 |
return {class_name: score for class_name, score in zip(class_names, scores)}
|
153 |
-
|
|
|
154 |
return classify_anxiety
|
155 |
|
156 |
with gr.Blocks() as iface:
|
@@ -159,6 +160,7 @@ with gr.Blocks() as iface:
|
|
159 |
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
|
160 |
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
|
161 |
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
|
|
162 |
with gr.Column():
|
163 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
164 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
@@ -167,6 +169,6 @@ with gr.Blocks() as iface:
|
|
167 |
out_val = gr.Textbox()
|
168 |
out_class = gr.Textbox()
|
169 |
out_text = gr.Textbox()
|
170 |
-
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_val, out_class, out_text])
|
171 |
|
172 |
iface.launch()
|
|
|
65 |
return threshold
|
66 |
|
67 |
# Create a Gradio interface with audio file and text inputs
|
68 |
+
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider, intervention):
|
69 |
# Transcribe the audio file using Whisper ASR
|
70 |
if audio_file != None:
|
71 |
transcribed_text = pipe(audio_file)["text"]
|
|
|
114 |
|
115 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
116 |
if toxicity_score > threshold:
|
117 |
+
print("threshold exceeded!! Launch intervention")
|
118 |
|
119 |
return toxicity_score, classification_output, transcribed_text
|
120 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
|
|
150 |
average_logprobs -= internal_lm_average_logprobs
|
151 |
scores = average_logprobs.softmax(-1).tolist()
|
152 |
return {class_name: score for class_name, score in zip(class_names, scores)}
|
153 |
+
if toxicity_score > threshold:
|
154 |
+
print("threshold exceeded!! Launch intervention")
|
155 |
return classify_anxiety
|
156 |
|
157 |
with gr.Blocks() as iface:
|
|
|
160 |
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
|
161 |
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
|
162 |
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
163 |
+
intervention_type = gr.Dropdown(choices=["Audio", "Therapy App", "Text Message"])
|
164 |
with gr.Column():
|
165 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
166 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
|
|
169 |
out_val = gr.Textbox()
|
170 |
out_class = gr.Textbox()
|
171 |
out_text = gr.Textbox()
|
172 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_val, out_class, out_text, intervention_type])
|
173 |
|
174 |
iface.launch()
|