Spaces:
Sleeping
Sleeping
Mohammad Sabik Irbaz
commited on
Commit
·
a4a2eb9
1
Parent(s):
8aad394
speech rank
Browse files- app.py +154 -3
- requirements.txt +11 -0
app.py
CHANGED
@@ -1,7 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
from torch.nn.functional import softmax
|
4 |
+
from transformers import pipeline
|
5 |
+
import time, librosa, torch, io
|
6 |
+
from pydub import AudioSegment
|
7 |
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
device = 'cpu'
|
11 |
+
cols = ['A1','A2','B1','B2','C1','C2']
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
13 |
+
lm = AutoModel.from_pretrained('t5-base').to(device)
|
14 |
+
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2').to(device)
|
15 |
+
pipe = pipeline("automatic-speech-recognition",
|
16 |
+
model="openai/whisper-base.en",
|
17 |
+
chunk_length_s=30, device="cpu")
|
18 |
|
19 |
+
def vocab_scoring(tokens, duration):
|
20 |
+
unique_vocab = {}
|
21 |
+
for token in tokens:
|
22 |
+
if token not in unique_vocab.keys():
|
23 |
+
unique_vocab[token] = 1
|
24 |
+
else:
|
25 |
+
unique_vocab[token] += 1
|
26 |
+
vocab_rate = len(unique_vocab)/duration
|
27 |
+
|
28 |
+
if vocab_rate < 40: return 1
|
29 |
+
if vocab_rate < 45: return 2
|
30 |
+
if vocab_rate < 55: return 3
|
31 |
+
if vocab_rate < 75: return 4
|
32 |
+
if vocab_rate < 85: return 5
|
33 |
+
if vocab_rate >= 85: return 6
|
34 |
+
|
35 |
+
def word_scoring(tokens, duration):
|
36 |
+
word_rate = len(tokens)/duration
|
37 |
+
|
38 |
+
if word_rate < 65: return 1
|
39 |
+
if word_rate < 90: return 2
|
40 |
+
if word_rate < 117: return 3
|
41 |
+
if word_rate < 142: return 4
|
42 |
+
if word_rate < 175: return 5
|
43 |
+
if word_rate >= 175: return 6
|
44 |
+
|
45 |
+
def fluency_scoring(tokenized_sentence, model):
|
46 |
+
try:
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(input_ids=tokenized_sentence, decoder_input_ids=tokenized_sentence)
|
49 |
+
logits = outputs.last_hidden_state
|
50 |
+
probas = softmax(logits, dim=-1)
|
51 |
+
perplexity = torch.exp(torch.mean(torch.sum(-probas * torch.log(probas), dim=-1)))
|
52 |
+
except:
|
53 |
+
tokenized_sentence = tokenized_sentence[:,:512]
|
54 |
+
with torch.no_grad():
|
55 |
+
outputs = model(input_ids=tokenized_sentence, decoder_input_ids=tokenized_sentence)
|
56 |
+
logits = outputs.last_hidden_state
|
57 |
+
probas = softmax(logits, dim=-1)
|
58 |
+
perplexity = torch.exp(torch.mean(torch.sum(-probas * torch.log(probas), dim=-1)))
|
59 |
+
|
60 |
+
if perplexity > 120: return 1
|
61 |
+
if perplexity > 100: return 2
|
62 |
+
if perplexity > 60: return 3
|
63 |
+
if perplexity > 50: return 4
|
64 |
+
if perplexity > 30: return 5
|
65 |
+
if perplexity <= 30: return 6
|
66 |
+
|
67 |
+
def similarity_scoring(prompt, response):
|
68 |
+
prompt_embeddings = model.encode(prompt, convert_to_tensor=True)
|
69 |
+
response_embeddings = model.encode(response, convert_to_tensor=True)
|
70 |
+
similarity = util.pytorch_cos_sim(prompt_embeddings, response_embeddings)[0].item()
|
71 |
+
|
72 |
+
if similarity < 0.3: return 1
|
73 |
+
if similarity < 0.4: return 2
|
74 |
+
if similarity < 0.5: return 3
|
75 |
+
if similarity < 0.6: return 4
|
76 |
+
if similarity < 0.7: return 5
|
77 |
+
if similarity >= 0.7: return 6
|
78 |
+
|
79 |
+
def classify(score):
|
80 |
+
if score <= 1: return (0, "A1")
|
81 |
+
if score == 2: return (1, "A2")
|
82 |
+
if score == 3: return (2, "B1")
|
83 |
+
if score == 4: return (3, "B2")
|
84 |
+
if score == 5: return (4, "C1")
|
85 |
+
if score >= 6: return (5, "C2")
|
86 |
+
|
87 |
+
def speech_to_text(audio):
|
88 |
+
audio_, rate = librosa.load(audio, sr=16000)
|
89 |
+
duration = librosa.get_duration(y=audio_, sr=rate)
|
90 |
+
transcription = pipe(audio)["text"]
|
91 |
+
return transcription, duration/60.0
|
92 |
+
|
93 |
+
def test_speech(prompt, audio):
|
94 |
+
response, duration = speech_to_text(audio)
|
95 |
+
|
96 |
+
response_tokens = tokenizer.encode(response,
|
97 |
+
return_tensors="pt",
|
98 |
+
add_special_tokens=True)
|
99 |
+
|
100 |
+
fluency_score = fluency_scoring(response_tokens, lm)
|
101 |
+
tokens = response_tokens.tolist()[0]
|
102 |
+
|
103 |
+
vocab_score = vocab_scoring(tokens, duration)
|
104 |
+
word_score = word_scoring(tokens, duration)
|
105 |
+
|
106 |
+
similarity_score = similarity_scoring(prompt, response)
|
107 |
+
|
108 |
+
print(f"Fluency Score => {fluency_score}")
|
109 |
+
print(f"Vocab Score => {vocab_score}")
|
110 |
+
print(f"Word Score => {word_score}")
|
111 |
+
print(f"Similarity Score => {similarity_score}")
|
112 |
+
|
113 |
+
scores = []
|
114 |
+
|
115 |
+
scores.append(word_score)
|
116 |
+
scores.append(vocab_score)
|
117 |
+
scores.append(fluency_score)
|
118 |
+
scores.append(similarity_score)
|
119 |
+
|
120 |
+
scores.append(round((word_score + vocab_score) / 2))
|
121 |
+
scores.append(round((word_score + fluency_score) / 2))
|
122 |
+
scores.append(round((word_score + similarity_score) / 2))
|
123 |
+
scores.append(round((vocab_score + fluency_score) / 2))
|
124 |
+
scores.append(round((vocab_score + similarity_score) / 2))
|
125 |
+
|
126 |
+
scores.append(round((word_score + vocab_score + fluency_score) / 3))
|
127 |
+
scores.append(round((word_score + vocab_score + similarity_score) / 3))
|
128 |
+
|
129 |
+
scores.append(round((word_score + vocab_score + fluency_score + similarity_score) / 4))
|
130 |
+
|
131 |
+
print(f"Votes =>\t{scores}")
|
132 |
+
|
133 |
+
# Max Voting
|
134 |
+
preds = [classify(score)[1] for score in scores]
|
135 |
+
pred_dict = {}
|
136 |
+
for idx, pred in enumerate(preds):
|
137 |
+
if pred in pred_dict.keys(): pred_dict[pred] += 1
|
138 |
+
else: pred_dict[pred] = 1
|
139 |
+
|
140 |
+
mx_val = 0
|
141 |
+
pred = ""
|
142 |
+
for key, value in pred_dict.items():
|
143 |
+
if value > mx_val:
|
144 |
+
mx_val = value
|
145 |
+
pred = key
|
146 |
+
|
147 |
+
return pred
|
148 |
+
|
149 |
+
prompt = gr.Textbox(label="Prompt")
|
150 |
+
audio_response = gr.Audio(type="filepath", label="Audio")
|
151 |
+
rank = gr.Textbox(label="Rank (A1-C2)")
|
152 |
+
|
153 |
+
iface = gr.Interface(fn=test_speech,
|
154 |
+
inputs=[prompt, audio_response],
|
155 |
+
outputs=rank.style(show_copy_button=True),
|
156 |
+
title="Rank Speech")
|
157 |
+
|
158 |
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.23.0
|
2 |
+
librosa==0.10.0.post1
|
3 |
+
torch==1.13.1
|
4 |
+
sentence-transformers==2.2.2
|
5 |
+
sentencepiece==0.1.97
|
6 |
+
transformers==4.26.1
|
7 |
+
tokenizers==0.13.2
|
8 |
+
pydub==0.25.1
|
9 |
+
ffmpeg==1.4
|
10 |
+
numpy==1.23.5
|
11 |
+
scipy==1.10.1
|