import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-Siglip2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def image_classification(image): """Classifies an image as AI-generated, deepfake, or real.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = model.config.id2label predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=image_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Classification Result"), title="AI vs Deepfake vs Real Image Classification", description="Upload an image to determine whether it is AI-generated, a deepfake, or a real image." ) # Launch the app if __name__ == "__main__": iface.launch()