Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,45 +4,55 @@ from pydub import AudioSegment, silence
|
|
4 |
import tempfile
|
5 |
import torch
|
6 |
import torchaudio
|
|
|
7 |
|
|
|
8 |
MODEL_NAME = "mrmuminov/whisper-small-uz"
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
11 |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME)
|
12 |
-
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
model = model.to(device)
|
15 |
|
16 |
-
|
|
|
17 |
silences = silence.detect_silence(audio, min_silence_len=500, silence_thresh=silence_thresh)
|
18 |
-
|
19 |
|
20 |
chunks = []
|
21 |
start = 0
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
start = split_point
|
|
|
28 |
return chunks
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
audio = AudioSegment.from_file(
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
if audio.frame_rate != 16000:
|
38 |
-
audio = audio.set_frame_rate(16000)
|
39 |
-
|
40 |
-
# Detect silent chunks
|
41 |
chunks = split_on_silence_with_duration_control(
|
42 |
-
audio, min_len=
|
43 |
)
|
44 |
|
45 |
-
# Transcribe each chunk
|
46 |
results = []
|
47 |
for chunk in chunks:
|
48 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as tmpfile:
|
@@ -50,29 +60,28 @@ def transcribe(audio_file):
|
|
50 |
waveform, _ = torchaudio.load(tmpfile.name)
|
51 |
input_features = processor(
|
52 |
waveform.squeeze().numpy(),
|
53 |
-
sampling_rate=
|
54 |
return_tensors="pt",
|
55 |
language="uz"
|
56 |
).input_features.to(device)
|
57 |
|
58 |
with torch.no_grad():
|
59 |
predicted_ids = model.generate(input_features)
|
60 |
-
|
61 |
-
results.append(
|
62 |
|
63 |
return " ".join(results)
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
file_transcribe = gr.Interface(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
description="mrmuminov/whisper-small-uz fine-tuned for Uzbek language",
|
73 |
-
)
|
74 |
|
75 |
-
|
76 |
-
gr.TabbedInterface([file_transcribe], ["Audio file"])
|
77 |
|
78 |
demo.launch()
|
|
|
4 |
import tempfile
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
+
import os
|
8 |
|
9 |
+
# ---------------- Config ---------------- #
|
10 |
MODEL_NAME = "mrmuminov/whisper-small-uz"
|
11 |
+
SAMPLE_RATE = 16000
|
12 |
+
MIN_LEN_MS = 15000
|
13 |
+
MAX_LEN_MS = 25000
|
14 |
+
SILENCE_THRESH = -40 # in dBFS
|
15 |
|
16 |
+
# ---------------- Load Model ---------------- #
|
17 |
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
18 |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME)
|
|
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
model = model.to(device).eval() # set to eval mode
|
21 |
|
22 |
+
# ---------------- Chunking Logic ---------------- #
|
23 |
+
def split_on_silence_with_duration_control(audio, min_len, max_len, silence_thresh):
|
24 |
silences = silence.detect_silence(audio, min_silence_len=500, silence_thresh=silence_thresh)
|
25 |
+
silence_midpoints = [((start + end) // 2) for start, end in silences]
|
26 |
|
27 |
chunks = []
|
28 |
start = 0
|
29 |
+
duration = len(audio)
|
30 |
+
|
31 |
+
while start < duration:
|
32 |
+
end = min(start + max_len, duration)
|
33 |
+
valid_splits = [s for s in silence_midpoints if start + min_len <= s <= end]
|
34 |
+
split_point = valid_splits[-1] if valid_splits else end
|
35 |
+
chunk = audio[start:split_point]
|
36 |
+
|
37 |
+
# Avoid zero-length chunks
|
38 |
+
if len(chunk) > 0:
|
39 |
+
chunks.append(chunk)
|
40 |
+
|
41 |
start = split_point
|
42 |
+
|
43 |
return chunks
|
44 |
|
45 |
+
# ---------------- Transcription ---------------- #
|
46 |
+
def transcribe(audio_file_path):
|
47 |
+
audio = AudioSegment.from_file(audio_file_path)
|
48 |
+
|
49 |
+
# Ensure mono and target sample rate
|
50 |
+
audio = audio.set_channels(1).set_frame_rate(SAMPLE_RATE)
|
51 |
+
|
|
|
|
|
|
|
|
|
52 |
chunks = split_on_silence_with_duration_control(
|
53 |
+
audio, min_len=MIN_LEN_MS, max_len=MAX_LEN_MS, silence_thresh=SILENCE_THRESH
|
54 |
)
|
55 |
|
|
|
56 |
results = []
|
57 |
for chunk in chunks:
|
58 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as tmpfile:
|
|
|
60 |
waveform, _ = torchaudio.load(tmpfile.name)
|
61 |
input_features = processor(
|
62 |
waveform.squeeze().numpy(),
|
63 |
+
sampling_rate=SAMPLE_RATE,
|
64 |
return_tensors="pt",
|
65 |
language="uz"
|
66 |
).input_features.to(device)
|
67 |
|
68 |
with torch.no_grad():
|
69 |
predicted_ids = model.generate(input_features)
|
70 |
+
text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
71 |
+
results.append(text)
|
72 |
|
73 |
return " ".join(results)
|
74 |
|
75 |
+
# ---------------- Gradio UI ---------------- #
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("### " + MODEL_NAME + " Transcribe Uzbek Audio")
|
78 |
|
79 |
+
file_transcribe = gr.Interface(
|
80 |
+
fn=transcribe,
|
81 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
82 |
+
outputs=gr.Textbox(label="Transcription"),
|
83 |
+
)
|
|
|
|
|
84 |
|
85 |
+
gr.TabbedInterface([file_transcribe], ["Audio File"])
|
|
|
86 |
|
87 |
demo.launch()
|