Init
Browse files- README.md +1 -1
- app.py +99 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🌖
|
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Tahrirchi BERT Base - Embedding
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Tahrirchi BERT Base - Embedding
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
|
7 |
+
class BertEmbeddingsGenerator:
|
8 |
+
def __init__(self, model_name="tahrirchi/tahrirchi-bert-base"):
|
9 |
+
"""Initialize the BERT model and tokenizer."""
|
10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
self.model = AutoModelForMaskedLM.from_pretrained(model_name)
|
12 |
+
self.model.eval() # Set to evaluation mode
|
13 |
+
|
14 |
+
def get_embeddings(self, text):
|
15 |
+
"""
|
16 |
+
Generate embeddings for the input text.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
text (str): Input text to embed
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
np.ndarray: Text embeddings
|
23 |
+
"""
|
24 |
+
# Tokenize input text
|
25 |
+
inputs = self.tokenizer(
|
26 |
+
text,
|
27 |
+
return_tensors="pt",
|
28 |
+
truncation=True,
|
29 |
+
padding=True,
|
30 |
+
max_length=512
|
31 |
+
)
|
32 |
+
|
33 |
+
# Generate embeddings
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = self.model(**inputs, output_hidden_states=True)
|
36 |
+
|
37 |
+
# Get the hidden states from the last layer
|
38 |
+
# The hidden states tuple contains embeddings from all layers, -1 gets the last layer
|
39 |
+
last_hidden_state = outputs.hidden_states[-1]
|
40 |
+
|
41 |
+
# Average token embeddings to get sentence embedding
|
42 |
+
embeddings = last_hidden_state.mean(dim=1)
|
43 |
+
|
44 |
+
# Convert to numpy and then to list
|
45 |
+
return embeddings.squeeze().cpu().numpy()
|
46 |
+
|
47 |
+
def create_gradio_interface():
|
48 |
+
"""Create and configure the Gradio interface."""
|
49 |
+
# Initialize the embeddings generator
|
50 |
+
generator = BertEmbeddingsGenerator()
|
51 |
+
|
52 |
+
def embed_text(input_text):
|
53 |
+
"""Gradio interface function."""
|
54 |
+
try:
|
55 |
+
if not input_text or not input_text.strip():
|
56 |
+
return json.dumps({"error": "Please enter some text"})
|
57 |
+
|
58 |
+
embeddings = generator.get_embeddings(input_text)
|
59 |
+
|
60 |
+
# Convert numpy array to list and handle NaN/Infinity values
|
61 |
+
embeddings_list = np.where(np.isfinite(embeddings), embeddings, None).tolist()
|
62 |
+
|
63 |
+
# Create a structured output
|
64 |
+
output = {
|
65 |
+
"embeddings": embeddings_list,
|
66 |
+
"dimensions": len(embeddings_list),
|
67 |
+
"status": "success"
|
68 |
+
}
|
69 |
+
|
70 |
+
return json.dumps(output, ensure_ascii=False)
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
return json.dumps({
|
74 |
+
"error": str(e),
|
75 |
+
"status": "error"
|
76 |
+
})
|
77 |
+
|
78 |
+
# Create Gradio interface
|
79 |
+
iface = gr.Interface(
|
80 |
+
fn=embed_text,
|
81 |
+
inputs=gr.Textbox(
|
82 |
+
lines=2,
|
83 |
+
placeholder="Enter text here...",
|
84 |
+
label="Input Text"
|
85 |
+
),
|
86 |
+
outputs=gr.JSON(label="Embeddings"),
|
87 |
+
title="BERT Text Embeddings Generator",
|
88 |
+
description="Generate embeddings from text using tahrirchi-bert-base model",
|
89 |
+
examples=[
|
90 |
+
["This is a sample text to generate embeddings."],
|
91 |
+
["Another example text to showcase the embedding generation."]
|
92 |
+
]
|
93 |
+
)
|
94 |
+
return iface
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
# Create and launch the interface
|
98 |
+
iface = create_gradio_interface()
|
99 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.38
|
2 |
+
torch==2.3.0
|
3 |
+
gradio==4.44.1
|