File size: 4,365 Bytes
9ba2a1c
 
a67942c
9ba2a1c
 
 
 
 
a5bf333
9ba2a1c
 
3b5175f
9ba2a1c
 
 
 
 
 
 
 
 
57bf973
9ba2a1c
 
a67942c
51499e8
9ba2a1c
 
42f6a29
a67942c
9ba2a1c
 
a67942c
9ba2a1c
 
 
 
 
 
 
 
 
 
 
42f6a29
9ba2a1c
 
 
 
42f6a29
9ba2a1c
 
 
42f6a29
9ba2a1c
 
 
 
 
42f6a29
9ba2a1c
 
 
42f6a29
 
9ba2a1c
42f6a29
9ba2a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5bf333
 
9ba2a1c
 
57bf973
42f6a29
 
 
 
57bf973
9ba2a1c
 
 
 
 
a5bf333
 
9ba2a1c
 
57bf973
42f6a29
 
 
 
57bf973
9ba2a1c
 
 
 
 
a5bf333
 
9ba2a1c
 
57bf973
42f6a29
 
 
 
57bf973
9ba2a1c
 
 
42f6a29
9ba2a1c
a5bf333
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import time
import os

MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper Large V3: Transcribe Audio",
    description=(
        "Whisper Large V3 fine-tuned for Uzbek language by Dataprizma"
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper Large V3: Transcribe Audio",
    description=(
        "Whisper Large V3 fine-tuned for Uzbek language by Dataprizma"
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Radio(["transcribe", "translate"], label="Task")
    ],
    outputs=["html", "text"],
    theme="huggingface",
    title="Whisper Large V3: Transcribe YouTube",
    description=(
        "Whisper Large V3 fine-tuned for Uzbek language by Dataprizma"
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch()