Spaces:
Sleeping
Sleeping
mriusero
commited on
Commit
·
f5f591a
1
Parent(s):
0156020
core: data shape
Browse files- app.py +4 -3
- src/production/flow.py +2 -2
- src/production/metrics/machine.py +13 -4
- src/ui/dashboard.py +37 -15
- src/ui/graphs/general_graphs.py +16 -16
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
from src.ui import sidebar_ui, dashboard_ui
|
| 4 |
from src.ui.session import session_state
|
|
@@ -12,10 +13,10 @@ custom_theme = gr.themes.Base(
|
|
| 12 |
|
| 13 |
STATE = {
|
| 14 |
"running": False,
|
| 15 |
-
"
|
| 16 |
-
"part_id":
|
|
|
|
| 17 |
"data": {},
|
| 18 |
-
"efficiency": {},
|
| 19 |
}
|
| 20 |
|
| 21 |
with gr.Blocks(theme=custom_theme) as demo:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from datetime import datetime
|
| 3 |
|
| 4 |
from src.ui import sidebar_ui, dashboard_ui
|
| 5 |
from src.ui.session import session_state
|
|
|
|
| 13 |
|
| 14 |
STATE = {
|
| 15 |
"running": False,
|
| 16 |
+
"date": datetime.now(),
|
| 17 |
+
"part_id": 0,
|
| 18 |
+
"status": {},
|
| 19 |
"data": {},
|
|
|
|
| 20 |
}
|
| 21 |
|
| 22 |
with gr.Blocks(theme=custom_theme) as demo:
|
src/production/flow.py
CHANGED
|
@@ -13,7 +13,7 @@ async def generate_data(state):
|
|
| 13 |
"""
|
| 14 |
Generate synthetic production data for a manufacturing process.
|
| 15 |
"""
|
| 16 |
-
current_time = state["
|
| 17 |
part_id = state["part_id"] if state["part_id"] else 0
|
| 18 |
|
| 19 |
non_compliance_rates = {
|
|
@@ -95,5 +95,5 @@ async def generate_data(state):
|
|
| 95 |
|
| 96 |
current_time += timedelta(seconds=1)
|
| 97 |
|
| 98 |
-
state["
|
| 99 |
state["part_id"] = part_id
|
|
|
|
| 13 |
"""
|
| 14 |
Generate synthetic production data for a manufacturing process.
|
| 15 |
"""
|
| 16 |
+
current_time = state["date"] if state["date"] else datetime.now()
|
| 17 |
part_id = state["part_id"] if state["part_id"] else 0
|
| 18 |
|
| 19 |
non_compliance_rates = {
|
|
|
|
| 95 |
|
| 96 |
current_time += timedelta(seconds=1)
|
| 97 |
|
| 98 |
+
state["date"] = current_time
|
| 99 |
state["part_id"] = part_id
|
src/production/metrics/machine.py
CHANGED
|
@@ -35,6 +35,14 @@ async def machine_metrics(raw_data):
|
|
| 35 |
mtbf = operating_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
| 36 |
mttr = unplanned_stop_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
return {
|
| 39 |
"opening_time": str(opening_time),
|
| 40 |
"required_time": str(required_time),
|
|
@@ -42,10 +50,11 @@ async def machine_metrics(raw_data):
|
|
| 42 |
"operating_time": str(operating_time),
|
| 43 |
"net_time": str(net_time),
|
| 44 |
"useful_time": str(useful_time),
|
| 45 |
-
"quality_rate": quality_rate,
|
| 46 |
-
|
| 47 |
-
"
|
| 48 |
-
"
|
|
|
|
| 49 |
"MTBF": str(mtbf),
|
| 50 |
"MTTR": str(mttr)
|
| 51 |
}
|
|
|
|
| 35 |
mtbf = operating_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
| 36 |
mttr = unplanned_stop_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
| 37 |
|
| 38 |
+
# Quality rate per tool ID
|
| 39 |
+
quality_by_tool = {}
|
| 40 |
+
for tool_id in [1, 2]:
|
| 41 |
+
tool_df = df[df["Tool ID"] == tool_id]
|
| 42 |
+
total = len(tool_df)
|
| 43 |
+
ok_count = (tool_df["Compliance"] == "OK").sum()
|
| 44 |
+
quality_by_tool[f"quality_rate_tool_{tool_id}"] = round(((ok_count / total) * 100), 2) if total > 0 else 0
|
| 45 |
+
|
| 46 |
return {
|
| 47 |
"opening_time": str(opening_time),
|
| 48 |
"required_time": str(required_time),
|
|
|
|
| 50 |
"operating_time": str(operating_time),
|
| 51 |
"net_time": str(net_time),
|
| 52 |
"useful_time": str(useful_time),
|
| 53 |
+
"quality_rate": round(quality_rate, 2),
|
| 54 |
+
**quality_by_tool,
|
| 55 |
+
"operating_rate": round(operating_rate, 2),
|
| 56 |
+
"availability_rate": round(availability_rate, 2),
|
| 57 |
+
"OEE": round(OEE, 2),
|
| 58 |
"MTBF": str(mtbf),
|
| 59 |
"MTTR": str(mttr)
|
| 60 |
}
|
src/ui/dashboard.py
CHANGED
|
@@ -31,7 +31,7 @@ async def dataflow(state):
|
|
| 31 |
state['data']['tools'].setdefault(f'tool_{i}', pd.DataFrame())
|
| 32 |
|
| 33 |
state['data'].setdefault('issues', {})
|
| 34 |
-
state.setdefault('
|
| 35 |
|
| 36 |
# Check running state
|
| 37 |
if state.get('running'):
|
|
@@ -64,7 +64,7 @@ async def dataflow(state):
|
|
| 64 |
] + [
|
| 65 |
pd.DataFrame(state['data']['issues'])
|
| 66 |
] + [
|
| 67 |
-
state['
|
| 68 |
]
|
| 69 |
state['last_hash'] = current_hash
|
| 70 |
|
|
@@ -74,12 +74,38 @@ async def dataflow(state):
|
|
| 74 |
for tool, df in tools_data.items():
|
| 75 |
state['data']['tools'][tool] = df
|
| 76 |
|
|
|
|
| 77 |
machine_data = await machine_metrics(raw_data)
|
| 78 |
-
state['
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
issues = await fetch_issues(raw_data)
|
| 81 |
state['data']['issues'] = issues
|
| 82 |
|
|
|
|
| 83 |
return (
|
| 84 |
[
|
| 85 |
pd.DataFrame(state['data']['tools'].get(f'tool_{i}', pd.DataFrame()))
|
|
@@ -89,7 +115,7 @@ async def dataflow(state):
|
|
| 89 |
] + [
|
| 90 |
pd.DataFrame(state['data']['issues'])
|
| 91 |
] + [
|
| 92 |
-
state['
|
| 93 |
]
|
| 94 |
)
|
| 95 |
|
|
@@ -108,20 +134,18 @@ def init_components(n=TOOLS_COUNT):
|
|
| 108 |
tool_plots = []
|
| 109 |
general_plots = []
|
| 110 |
|
| 111 |
-
# Tool metrics displays
|
| 112 |
-
for i in range(1, n + 1):
|
| 113 |
display = ToolMetricsDisplay()
|
| 114 |
displays.append(display)
|
| 115 |
tool_plots.extend(display.tool_block(df=pd.DataFrame(), id=i))
|
| 116 |
|
| 117 |
-
# General metrics display
|
| 118 |
-
main_display = GeneralMetricsDisplay()
|
| 119 |
displays.append(main_display)
|
| 120 |
general_plots.extend(
|
| 121 |
main_display.general_block(
|
| 122 |
all_tools_df=pd.DataFrame(),
|
| 123 |
issues_df=pd.DataFrame(),
|
| 124 |
-
|
| 125 |
)
|
| 126 |
)
|
| 127 |
return displays, tool_plots, general_plots
|
|
@@ -141,18 +165,16 @@ async def on_tick(state, displays):
|
|
| 141 |
tool_dfs = data[:-3] # all individual tool DataFrames
|
| 142 |
all_tools_df = data[-3] # 'all' tools DataFrame
|
| 143 |
issues_df = data[-2] # issues DataFrame
|
| 144 |
-
|
| 145 |
|
| 146 |
-
# General plots
|
| 147 |
-
general_display = displays[-1]
|
| 148 |
general_plots = general_display.refresh(
|
| 149 |
all_tools_df=all_tools_df,
|
| 150 |
issues_df=issues_df,
|
| 151 |
-
|
| 152 |
)
|
| 153 |
|
| 154 |
-
# Tool-specific plots
|
| 155 |
-
tool_plots = []
|
| 156 |
for df, display in zip(tool_dfs, displays[:-1]):
|
| 157 |
tool_plots.extend(display.refresh(df=df))
|
| 158 |
|
|
|
|
| 31 |
state['data']['tools'].setdefault(f'tool_{i}', pd.DataFrame())
|
| 32 |
|
| 33 |
state['data'].setdefault('issues', {})
|
| 34 |
+
state.setdefault('status', {})
|
| 35 |
|
| 36 |
# Check running state
|
| 37 |
if state.get('running'):
|
|
|
|
| 64 |
] + [
|
| 65 |
pd.DataFrame(state['data']['issues'])
|
| 66 |
] + [
|
| 67 |
+
state['status']
|
| 68 |
]
|
| 69 |
state['last_hash'] = current_hash
|
| 70 |
|
|
|
|
| 74 |
for tool, df in tools_data.items():
|
| 75 |
state['data']['tools'][tool] = df
|
| 76 |
|
| 77 |
+
# Get machine metrics
|
| 78 |
machine_data = await machine_metrics(raw_data)
|
| 79 |
+
state['status'] = machine_data
|
| 80 |
|
| 81 |
+
# Get tools stats
|
| 82 |
+
for tool in ['tool_1', 'tool_2', 'all']:
|
| 83 |
+
df = state['data']['tools'].get(tool, pd.DataFrame())
|
| 84 |
+
if df.empty or 'Timestamp' not in df.columns:
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
df = df.copy()
|
| 88 |
+
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
|
| 89 |
+
df.dropna(subset=['Timestamp'], inplace=True)
|
| 90 |
+
|
| 91 |
+
if df.empty:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
idx = df['Timestamp'].idxmax()
|
| 95 |
+
|
| 96 |
+
for cote in ['pos', 'ori']:
|
| 97 |
+
for metric_type in ['cp', 'cpk']:
|
| 98 |
+
column = f"{cote}_rolling_{metric_type}"
|
| 99 |
+
if column in df.columns:
|
| 100 |
+
value = df.at[idx, column]
|
| 101 |
+
key = f"{tool}_{metric_type}_{cote}"
|
| 102 |
+
state['status'][key] = round(value, 4)
|
| 103 |
+
|
| 104 |
+
# Get issues
|
| 105 |
issues = await fetch_issues(raw_data)
|
| 106 |
state['data']['issues'] = issues
|
| 107 |
|
| 108 |
+
# Update situation
|
| 109 |
return (
|
| 110 |
[
|
| 111 |
pd.DataFrame(state['data']['tools'].get(f'tool_{i}', pd.DataFrame()))
|
|
|
|
| 115 |
] + [
|
| 116 |
pd.DataFrame(state['data']['issues'])
|
| 117 |
] + [
|
| 118 |
+
state['status']
|
| 119 |
]
|
| 120 |
)
|
| 121 |
|
|
|
|
| 134 |
tool_plots = []
|
| 135 |
general_plots = []
|
| 136 |
|
| 137 |
+
for i in range(1, n + 1): # Tool metrics displays
|
|
|
|
| 138 |
display = ToolMetricsDisplay()
|
| 139 |
displays.append(display)
|
| 140 |
tool_plots.extend(display.tool_block(df=pd.DataFrame(), id=i))
|
| 141 |
|
| 142 |
+
main_display = GeneralMetricsDisplay() # General metrics display
|
|
|
|
| 143 |
displays.append(main_display)
|
| 144 |
general_plots.extend(
|
| 145 |
main_display.general_block(
|
| 146 |
all_tools_df=pd.DataFrame(),
|
| 147 |
issues_df=pd.DataFrame(),
|
| 148 |
+
status={}
|
| 149 |
)
|
| 150 |
)
|
| 151 |
return displays, tool_plots, general_plots
|
|
|
|
| 165 |
tool_dfs = data[:-3] # all individual tool DataFrames
|
| 166 |
all_tools_df = data[-3] # 'all' tools DataFrame
|
| 167 |
issues_df = data[-2] # issues DataFrame
|
| 168 |
+
status = data[-1] # status dict
|
| 169 |
|
| 170 |
+
general_display = displays[-1] # General plots
|
|
|
|
| 171 |
general_plots = general_display.refresh(
|
| 172 |
all_tools_df=all_tools_df,
|
| 173 |
issues_df=issues_df,
|
| 174 |
+
status=status
|
| 175 |
)
|
| 176 |
|
| 177 |
+
tool_plots = [] # Tool-specific plots
|
|
|
|
| 178 |
for df, display in zip(tool_dfs, displays[:-1]):
|
| 179 |
tool_plots.extend(display.refresh(df=df))
|
| 180 |
|
src/ui/graphs/general_graphs.py
CHANGED
|
@@ -209,7 +209,7 @@ class GeneralMetricsDisplay:
|
|
| 209 |
)
|
| 210 |
return fig
|
| 211 |
|
| 212 |
-
def general_block(self, all_tools_df, issues_df,
|
| 213 |
header = f"Metrics Summary"
|
| 214 |
html_content = f"""
|
| 215 |
<div style="display: flex; align-items: center; justify-content: flex-start; width: 100%;">
|
|
@@ -225,24 +225,24 @@ class GeneralMetricsDisplay:
|
|
| 225 |
total_count = gr.Plot(
|
| 226 |
self.kpi_value(
|
| 227 |
value=self.get_max_part_id(all_tools_df),
|
| 228 |
-
title="Total Count"
|
| 229 |
)
|
| 230 |
)
|
| 231 |
total_time = gr.Plot(
|
| 232 |
self.kpi_value(
|
| 233 |
-
value=
|
| 234 |
title="Total Time"
|
| 235 |
)
|
| 236 |
)
|
| 237 |
mtbf_plot = gr.Plot(
|
| 238 |
self.kpi_value(
|
| 239 |
-
value=
|
| 240 |
title="MTBF"
|
| 241 |
)
|
| 242 |
)
|
| 243 |
mttr_plot = gr.Plot(
|
| 244 |
self.kpi_value(
|
| 245 |
-
value=
|
| 246 |
title="MTTR"
|
| 247 |
)
|
| 248 |
)
|
|
@@ -252,21 +252,21 @@ class GeneralMetricsDisplay:
|
|
| 252 |
with gr.Row(height=150):
|
| 253 |
oee_plot = gr.Plot(
|
| 254 |
self.kpi_rate(
|
| 255 |
-
percentage=
|
| 256 |
title="OEE"
|
| 257 |
)
|
| 258 |
)
|
| 259 |
with gr.Row(height=150):
|
| 260 |
quality_rate_plot = gr.Plot(
|
| 261 |
self.kpi_rate(
|
| 262 |
-
percentage=
|
| 263 |
title="Quality Rate"
|
| 264 |
)
|
| 265 |
)
|
| 266 |
with gr.Row(height=150):
|
| 267 |
availability_plot = gr.Plot(
|
| 268 |
self.kpi_rate(
|
| 269 |
-
percentage=
|
| 270 |
title="Availability"
|
| 271 |
)
|
| 272 |
)
|
|
@@ -284,14 +284,14 @@ class GeneralMetricsDisplay:
|
|
| 284 |
]
|
| 285 |
return self.plots
|
| 286 |
|
| 287 |
-
def refresh(self, all_tools_df, issues_df,
|
| 288 |
return [
|
| 289 |
-
self.kpi_value(value=self.get_max_part_id(all_tools_df), title="Total Count"),
|
| 290 |
-
self.kpi_value(value=
|
| 291 |
-
self.kpi_rate(percentage=
|
| 292 |
-
self.kpi_rate(percentage=
|
| 293 |
-
self.kpi_rate(percentage=
|
| 294 |
-
self.kpi_value(value=
|
| 295 |
-
self.kpi_value(value=
|
| 296 |
self.pareto(issues_df, error_col='Error Code')
|
| 297 |
]
|
|
|
|
| 209 |
)
|
| 210 |
return fig
|
| 211 |
|
| 212 |
+
def general_block(self, all_tools_df, issues_df, status):
|
| 213 |
header = f"Metrics Summary"
|
| 214 |
html_content = f"""
|
| 215 |
<div style="display: flex; align-items: center; justify-content: flex-start; width: 100%;">
|
|
|
|
| 225 |
total_count = gr.Plot(
|
| 226 |
self.kpi_value(
|
| 227 |
value=self.get_max_part_id(all_tools_df),
|
| 228 |
+
title="Total Count (parts)"
|
| 229 |
)
|
| 230 |
)
|
| 231 |
total_time = gr.Plot(
|
| 232 |
self.kpi_value(
|
| 233 |
+
value=status.get("opening_time", "0 days 00:00:00"),
|
| 234 |
title="Total Time"
|
| 235 |
)
|
| 236 |
)
|
| 237 |
mtbf_plot = gr.Plot(
|
| 238 |
self.kpi_value(
|
| 239 |
+
value=status.get("MTBF", "0 days 00:00:00"),
|
| 240 |
title="MTBF"
|
| 241 |
)
|
| 242 |
)
|
| 243 |
mttr_plot = gr.Plot(
|
| 244 |
self.kpi_value(
|
| 245 |
+
value=status.get("MTTR", "0 days 00:00:00"),
|
| 246 |
title="MTTR"
|
| 247 |
)
|
| 248 |
)
|
|
|
|
| 252 |
with gr.Row(height=150):
|
| 253 |
oee_plot = gr.Plot(
|
| 254 |
self.kpi_rate(
|
| 255 |
+
percentage=status.get('OEE', 0),
|
| 256 |
title="OEE"
|
| 257 |
)
|
| 258 |
)
|
| 259 |
with gr.Row(height=150):
|
| 260 |
quality_rate_plot = gr.Plot(
|
| 261 |
self.kpi_rate(
|
| 262 |
+
percentage=status.get("quality_rate", 0),
|
| 263 |
title="Quality Rate"
|
| 264 |
)
|
| 265 |
)
|
| 266 |
with gr.Row(height=150):
|
| 267 |
availability_plot = gr.Plot(
|
| 268 |
self.kpi_rate(
|
| 269 |
+
percentage=status.get("availability_rate", 0),
|
| 270 |
title="Availability"
|
| 271 |
)
|
| 272 |
)
|
|
|
|
| 284 |
]
|
| 285 |
return self.plots
|
| 286 |
|
| 287 |
+
def refresh(self, all_tools_df, issues_df, status):
|
| 288 |
return [
|
| 289 |
+
self.kpi_value(value=self.get_max_part_id(all_tools_df), title="Total Count (parts)"),
|
| 290 |
+
self.kpi_value(value=status.get("opening_time", "0 days 00:00:00"), title="Total Time"),
|
| 291 |
+
self.kpi_rate(percentage=status.get('OEE', 0), title="OEE"),
|
| 292 |
+
self.kpi_rate(percentage=status.get("quality_rate", 0), title="Quality Rate"),
|
| 293 |
+
self.kpi_rate(percentage=status.get("availability_rate", 0), title="Availability"),
|
| 294 |
+
self.kpi_value(value=status.get("MTBF", "0 days 00:00:00"), title="MTBF"),
|
| 295 |
+
self.kpi_value(value=status.get("MTTR", "0 days 00:00:00"), title="MTTR"),
|
| 296 |
self.pareto(issues_df, error_col='Error Code')
|
| 297 |
]
|